首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2017-12-31
43
问题
20n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交 及(β,k
0
β,k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=‖β‖>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/iPX4777K
0
考研数学三
相关试题推荐
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设矩阵求可逆矩阵P,使p-1AP为对角矩阵。
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为________。
设有线性方程组证明:若α1,α2,α3,α4两两不相等,则此线性方程组无解;
设矩阵已知A的一个特征值为3,试求y;
设随机变量(X,Y)在圆域x2+y2≤r2上服从联合均匀分布。(1)求(X,Y)的相关系数ρ;(2)问X和Y是否独立?
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1)=。记Fz(z)为随机变量Z=xy的分布函数,则函数Fz(z)的间断点个数为
微分方程xdy=y(xy-1)dx的通解为__________.
(Ⅰ)设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且F(0)=0,则F(x)=________;(Ⅱ)若函数f(x)连续并满足f(x)=x+∫01xf(x)dx,则f(x)=_________
随机试题
抗磷脂抗体综合征临床上可表现为
A.磨光面B.颊面C.咬合面D.组织面E.抛光面与水平力量有关,使义齿保持稳定的表面是
A.归肾丸B.人参养荣汤C.加减一阴煎D.血府逐瘀汤E.苍附导痰丸
甲请A搬家公司搬家,A公司派出BCD三人前往。在搬家过程中,B发现甲的掌上电脑遗落在一角,便偷偷藏人自己腰包;C与D在搬运甲最珍贵的一盆兰花时不慎将其折断,为此甲与CD二人争吵起来,争吵之时不知是谁又将甲阳台上的另一盆鲜花碰下,砸伤路人E。BCD见事已至此
某企业由一位总经理和两位副总经理组成的领导班子,工作有魄力,开拓创新意识强,经常超负荷工作,该企业产品在市场有一定的竞争能力,企业经济效益也不错,但近一段时期来,随着业务量增大,企业经营状况有所下降。为改变这种状况,总经理召集20多个部门的负责人及全体领导
一般酒中的酒精成分高于()度以上者称为高度酒。
秦王向韩非子询问治国理政的办法,韩非子的回答是“明主之国,无书简之文,以法为教;无先王之语,以吏为师;无私剑之捍,以斩首为勇”。下列选项中因韩非子的建议导致的结果描述正确的是()。
Professional______referstocoverageofrisksraisedbyprofessionaladvisoryandserviceprovidersiftheygiveclientsinsuffi
把目标程序中的逻辑地址转换成主存空间的物理地址称为( )。
WhatisCanonDigitalPowerShots230camera’ssize?______
最新回复
(
0
)