首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
20n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2017-12-31
42
问题
20n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交 及(β,k
0
β,k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=‖β‖>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/iPX4777K
0
考研数学三
相关试题推荐
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A是n阶正定阵,E是n阶单位阵,证明:A+E的行列式大于1.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α1+α3,Aα3=2α2+3α3求矩阵A的特征值;
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:A2;
设矩阵已知A的一个特征值为3,试求y;
一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重50千克,标准差为5千克。若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977(Ф(2)一0.977,其中Ф(x)是标准正态分布函数。
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=__________.
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图)
随机试题
员工干劲的高低的衡量指标包括()
显示企业人员结构比例的视图是
嗜铬细胞瘤的心血管系统临床表现有
我国西南某地,一个干部途中拾得一只自毙旱獭,尚未腐烂,取旱獭胆生食。2日后,恶寒、战栗、发热40℃,脉搏细速,呼吸急促,颜面潮红,眼结膜充血,口唇颜面及四肢皮肤发绀,病初干咳,继之咳频,吐泡沫状鲜红血痰,病情恶化很快,发病后2日死亡。患者最可能患感染的疾病
患者,女,45岁。因淋雨后突发小便频急短数,刺痛灼热,尿色黄赤,口苦,舌苔黄腻,脉濡数。治疗应首选
下列属于Ⅲ型超敏反应的疾病是
下列哪一或者哪些检察官应当被辞退?()
甲公司为上市公司,系增值税一般纳税企业,适用的增值税税率为17%。所得税核算采用资产负债表债务法核算,所得税税率25%,2013年的财务会计报告于2014年4月30日经批准对外报出。2013年所得税汇算清缴于2014年4月30日完成。该公司按净利润的10%
关于发放股票股利,下列说法不正确的是()。
严肃认真与和蔼可亲两种类型的领导,你更喜欢哪一种?如何与领导相处?
最新回复
(
0
)