首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y"(3y’2一x)=y’满足初值条件y(1)=y’(1)=1的特解.
求微分方程y"(3y’2一x)=y’满足初值条件y(1)=y’(1)=1的特解.
admin
2021-11-09
52
问题
求微分方程y"(3y
’2
一x)=y’满足初值条件y(1)=y’(1)=1的特解.
选项
答案
这是不显含y型的二阶微分方程y"=f(x,y’),按典型步骤去做即可. 令y’=p,有[*]原方程化为 [*] 化为 3p
2
dp一(xdp+pdx)=0, 这是关于P与x的全微分方程,解之得 p
3
一xp=C
1
, 以初值条件:x=1时,p=1代入,得 1—1=C
1
, 即C
1
=0.从而得 p
3
一xp=0. 分解成p=0及p
3
=x,即 [*] 又[*]不满足初值条件y’(1)=1,弃之.解 [*] 得[*]将x=1时,y=1代入,得[*]故得特解[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XMy4777K
0
考研数学二
相关试题推荐
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设=∫0χcos(χ-t)2dt确定y为χ的函数,求.
设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.
设f(χ)二阶可导,且=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
计算二重积分,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值,使该图形绕x轴旋转一周所得立体的体积最小.
随机试题
一创伤患者,伴恶心、呕吐、腹痛入院。体查:面色苍白,脉搏微弱,左下胸可见皮肤瘀斑,胸廓挤压征(+),左肺呼吸音减弱,移动性浊音(+),无明显腹膜炎体征首选的检查方法是
创伤最常见的并发症为
A.二妙散B.八正散C.疏凿饮予D.程氏萆薢分清饮E.薏苡仁汤治疗热淋,应首选
鸿捷有限公司成立于2008年3月,从事生物医药研发。公司注册资本为5000万元,股东为甲、乙、丙、丁,持股比例分别为37%、30%、19%、14%;甲为董事长,乙为总经理。公司成立后,经营状况一直不错。2013年8月初,为进一步拓展市场、加强经营
某工程建设项目施工招标,投资估算1亿元。评标过程中,评标委员会的下列做法不正确的是()。[2012年真题]
风险评估是指( )。
以下是一位高中生的习作,阅读并回答以下问题。人生就是一条路人与路的关系非常密切,没有了人,路也是不复存在,没有了路,人也就寸步难行,人与路既和谐又统一。人的一
图1示意①、②、③、④城市位置。读图1,完成13~15题。在秋分日(9月23日前后),最早看到日出的城市是:
对于下图所示的采用行扫描方法的矩阵式键盘电路,在确定键盘中哪一个键被按下的过程中,需采用四根I/O引脚GPG4一GPG7作为行扣描信号的输__________【63】,四根I/O引脚GPF5-GPF8作为输__________【64】。
HowtoConquerPublicSpeakingFearI.IntroductionA.Publicspeaking—acommonsourceofstressforeveryoneB.Thetruthabou
最新回复
(
0
)