首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
admin
2019-08-23
62
问题
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫
0
1
f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫
0
ξ
f(t)dt.
选项
答案
令φ(χ)=e
-χ
∫
0
χ
f(t)dt, 因为φ(0)=φ(1)=0,所以存在ξ∈(0,1),使得φ′(ξ)=0, 而φ′(χ)=e
-χ
[f(χ)-∫
0
χ
f(t)dt]且e
-χ
,故f(ξ)=∫
0
ξ
f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/F9A4777K
0
考研数学二
相关试题推荐
曲线在(0,0)处的切线方程为______。
设x与y均大于0,且x≠y,证明:
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
设excos2x与3x为某n阶常系数齐次线性微分方程的两个特解,设n为尽可能小的正整数,y(n)前的系数为1,则该微分方程为______.
(I)求定积分an=∫02x(2x-x2)ndx,n=1,2,…;(Ⅱ)对于(I)中的an,证明an﹢1<an(n=1,2,…)且=0.
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
求极限
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μλ2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
曲线y2=2x在任意点处的曲率为________.
微分方程ydx+(x一3y2)dy=0,x>0满足条件y|x=1的特解为______。
随机试题
我国公民在我国领域之外犯我国刑法规定之罪的,原则上适用我国刑法,但按照我国刑法规定,可以不予追究的是()
简述全球价格战略的种类。
根据抗原抗体反应的特点,以下哪种说法是正确的
患者,男,10岁,有性早熟的临床表现,松果体区及鞍上见直径1.5~2.5cm病灶,为等T1等T2,注射Cd-DTPA后病灶明显强化该病变可能为
需摄取腕关节尺偏位——腕部外展正位的是
在工资系统中,通过自动转账生成机制凭证,实现与账务系统的数据传递。()
根据公司法律制度的规定,公司可以设立子公司,子公司()。
阅读下面材料,回答127~130题。材料一:中国古代思想家说:“夫君者舟也,庶人者水也,水所以载舟,亦所以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料二:十六大政治报告指出:
一、注意事项1.《申论》考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,然后按“申论要求”依次作答。二、给定资料1.保护农
下列关于数据库三级模式结构的叙述中,哪一个是不正确的?
最新回复
(
0
)