首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e—4x+x2+3x+2,则Q(x)=___________,该微分方程的通解为___________.
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e—4x+x2+3x+2,则Q(x)=___________,该微分方程的通解为___________.
admin
2016-09-30
47
问题
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e
—4x
+x
2
+3x+2,则Q(x)=___________,该微分方程的通解为___________.
选项
答案
Q(x)=2+2x+3—12(x
2
+3x+2)=一12x
2
一34x一19, y=C
1
e
—4x
+C
2
e
3x
+x
2
+3x+2(其中C
1
,C
2
为任意常数)
解析
显然λ=一4是特征方程λ
2
+λ+q=0的解,故q=一12,
即特征方程为λ
2
+λ一12=0,特征值为λ
1
=一4,λ
2
=3.
因为x
2
+3x+2为微分方程y"+y’一12y=Q(x)的一个特解,
所以Q(x)=2+2x+3—12(x
2
+3x+2)=一12x
2
一34x一19,
且通解为y=C
1
e
—4x
+C
2
e
3x
+x
2
+3x+2(其中C
1
,C
2
为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/XOw4777K
0
考研数学一
相关试题推荐
π
已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,f’(x)>0,f”(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设.当a,b为何值时,存在矩阵C,使得AC-CA=B?并求所有矩阵C.
已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.
设函数u(x,y)在有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足≠0及=0,则().
星形线绕Ox轴旋转所得旋转曲面的面积为_________.
设总体X~N(μ,8),μ未知,X1,X2,…,X36是取自X的一个简单随机样本,如果以区间(-1,+1)作为肛的置信区间,求置信度
设一次试验成功的概率为p,进行100次独立重复试验,当p=___________时,成功次数的标准差最大,其最大值为__________.
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)