首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b) 使得 [f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b) 使得 [f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
admin
2011-12-29
117
问题
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)
使得 [f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
选项
答案
证明设F(x)=[f(b)-f(a)]g(x)-[g(b)-g(a)]f(x), 显然F(x)在[a,b]上连续,(a,b)内可导,且 F(a)=f(b)g(a)-g(b)f(a)=F(b) 由罗尔定理知,必存在ε∈(a,b),使Fˊ(ε)=0,即 Fˊ(ε)=[f(b)-f(a)]gˊ(ε)-[g(b)-g(a)]fˊ(ε)=0 所以结论成立
解析
转载请注明原文地址:https://kaotiyun.com/show/Xb54777K
0
考研数学一
相关试题推荐
设D=为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.利用(I)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
(1999年试题,九)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.通过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯:形面积
已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
[*]
(04年)等于
设A为2阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.证明P为可逆矩阵.
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a,b为常数,则【】
(14年)设函数f(x)=,x∈[0.1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…fn(x)=f(fn-1(x)),…记Sn是由曲线y=fn(x),直线x=1及x轴所围成平面图形的面积,求极限。
设f(x)在[a,b]上有三阶连续导数,写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)