首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2017-09-08
66
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
……α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
……α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.
本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.注:本题也可以用齐次线性方程组有非零解考虑正确选项.由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵A的列向量组线性相关.
又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/Xpt4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
某商品的价格P与需求量Q的关系为P=10-Q/5(1)求需求量为20及30时的总收益R、平均收益R及边际收益Rˊ;(2)Q为多少时总收益最大?
证明函数y=sinx-x单调减少.
曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是aTA-1a≠b.
设F(x)=∫x2x+πesintsintdt,则F(x)
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
霍乱发病主要由哪项引起( )。流脑发病主要由哪项引起( )。
下列行为中,虽主体不属于完全民事行为能力人,但行为效力不受影响的有哪些?()
法律关系有不同的分类标准,但是如果按照公私法的划分的标准法律关系可以划分为三大类:公法法律关系、私法法律关系和公私法(社会法等)混合法律关系。关于以上的分类,以下论述中正确的是:()。
已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。
下列关于经济学概括、解释投资与国民收入之间变动关系的理论的说法,错误的是()。
忌油管道用蒸汽吹扫脱脂时,应按设计规定进行脱脂质量检查。利用间接法检验时宜采用()。
下列属于综合理财规划服务的主要内容的有()。
在负责特定任务工作小组内部进行的所有形式的沟通,都可以称为()
近代自然科学诞生的标志是:
多媒体计算机是指
最新回复
(
0
)