首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2017-09-08
47
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
本题考查矩阵的秩及其矩阵行、列向量组的线性相关性.注意向量组α
1
,α
2
……α
r
线性相关的充分必要条件是方程组x
1
α
1
+x
2
α
2
+…+x
r
α
r
=0有非零解,若令矩阵A=(α
1
,α
2
……α
r
),则矩阵A的列向量组线性相关的充分必要条件Ax=0有非零解.
本题的4个选项的差别在于行与列,所以应从已知条件出发进行分析,若举反例,则更容易找出正确选项.
设A为m×n矩阵,B为n×p矩阵,当AB=O时,有r(A)+r(B)≤n,又A,B为非零矩阵,则必有r(A)>0,r(B)>0,可见r(A)<n,r(B)<n,即A的列向量组线性相关,B的行向量组线性相关.故选A.注:本题也可以用齐次线性方程组有非零解考虑正确选项.由于AB=O,则矩阵B的每一列向量均为方程组Ax=0的解,而B≠O,于是方程组Ax=0有非零解,所以矩阵A的列向量组线性相关.
又B
T
A
T
=O,而A
T
≠O,于是方程组B
T
x=0有非零解,所以B
T
的列向量组,也即B的行向量组线性相关,选项A正确.
本题还可以用取特殊值法:如若取A=(1,0),
,易知AB=O,且有A的行向量组线性无关,B的列向量组也线性无关.即选项B、C、D均不正确.
转载请注明原文地址:https://kaotiyun.com/show/Xpt4777K
0
考研数学二
相关试题推荐
下列给出的各对函数是不是相同的函数?
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
设f(x)=2|x-a|(其中a为常数),求fˊ(x).
证明:当x≥5时,2x>x2.
证明:
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
A、低阶无穷小B、高阶无穷小C、等价无穷小D、同阶但不等价的无穷小B
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
在下列词语后的括号内填写词语所包含的语素数量,并根据构词方式将词语分别填入下列各项中。奥林匹克[]开关[]小孩儿[]黑板[]雷达[]渐渐[](1)直接成词:(2)复合构词:(3)附加构词:
(2013年第43题)酒精中毒时,肝细胞内出现马洛里小体(Mallorybody),其病变性质是
A.瘘管切开B.挂线疗法C.肛瘘切除D.无需特殊治疗E.分期治疗
急性胰腺炎患者急性期严格禁食、禁饮的时间是
运用所学原理,解释下述材料所体现的不同的儿童发展观,并提出自己的看法。墨子:染于苍则苍,染于黄则黄,所入者变,其色亦变。霍尔:一两的遗传胜过一吨的教育。桑代克:人的智慧80%决定于基因,17%决定于训练,3%决定于偶然因素。
人的死亡是能够引起一系列民事法律关系产生、变更和消灭的()。
读某生产企业分布图。回答下列问题。该生产企业最有可能是()。
给定资料对北京航空航天大学招生黑幕予以披露,用不超过250字对这一黑幕进行概括。 要求:全面,有条理,有层次。以给定材料所反映的问题为内容进行论证,既可就事论事,也可以全面论证。 要求:自拟标题,字数1000左右。(
许多人选择出国留学一是为了“镀金”,有助于回国找工作或留在他国工作等待申请绿卡;二是为了提高自身综合素质,接受多元化教育。但国外名校的高招收标准也使很多人的留学梦成了“一厢情愿”。于是出现了每年都有中国留学生因造假被退学的现象。有50%的人伪造高中成绩单,
就业是民生之本,为了缓解就业压力,提供更多的就业机会,近年来国家采取了积极的就业措施,确立的就业方针为()
最新回复
(
0
)