首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,Ax=β有解但不唯一。 (Ⅰ)求a的值; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵; (Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
设矩阵,Ax=β有解但不唯一。 (Ⅰ)求a的值; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵; (Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
admin
2017-11-30
78
问题
设矩阵
,Ax=β有解但不唯一。
(Ⅰ)求a的值;
(Ⅱ)求可逆矩阵P,使得P
-1
AP为对角矩阵;
(Ⅲ)求正交矩阵Q,使得Q
T
AQ为对角矩阵。
选项
答案
(Ⅰ)因为方程组有解但不唯一,所以 [*] 解得a=-2或a=1。 若a=1,则增广矩阵 [*] 系数矩阵和增广矩阵的秩不相同,方程组无解,因此a=-2。 [*] (Ⅲ)由于ξ
1
,ξ
2
,ξ
3
分别是属于A的三个不同特征值的特征向量,故正交。将特征向量单位化 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Y9X4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记则服从t(n一1)分布的随机变量是().
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"(ξ)=3.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
求极限,ai>0,且ai≠1,i=1,2,…,n,n≥2.
已知矩阵相似.求x与y;
设(2E一C-1B)AT—C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
已知,求A的特征值和特征向量,a为何值时,A相似于A,a为何值时,A不能相似于A.
设ξ,n是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为,i=1,2,3,又设X=max{ξ,η),Y=min{ξ,η),试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ,η}.
求下列极限.
设f(x)连续,且则下列结论正确的是().
随机试题
某塑料制品生产线建于2006年1月,月生产能力30吨,总投资200万元,其中主机120万元,建筑安装工程费用40万元,其他设备费用30万元,其他各项费用10万元。2010年1月进行评估。当时主机价格上涨20%,建筑安装工程费上涨30%,其他设备价格上涨15
某污水管道为Φ1600mm钢筋混凝土管,采用顶管法施工。顶管工作井采用沉井。井壁厚600mm。沉井穿过的土层主要为黏土质砂土,采用不排水下沉。由于沉井深度较大,沉井下沉施工中下沉困难,进度缓慢,项目部采取辅助方法助沉。顶管施工中,随着顶进距离的增加,顶
背景某机电安装公司采用EPC方式承包了一项石油化工工程,在设备订货采购阶段,该机电安装公司通过投标询价向某设备制造厂订制了一批塔、容器类非标设备,包括3台分段到货的塔和8台整体到货的卧式容器。安装公司项目部采购部门对该批非标设备进行了监造,编制了
承重水泥搅拌桩进行强度检验时,应取()后的试件。
随着家庭成员年年龄的增大,叶先生急需为自己的家庭作一个理财计划,假如你接到了这个客户的要求,经过初步沟通面谈后,获得了以下家庭、职业与财务信息:一、家庭成员状况四、保险情况叶先生和叶太太拥有社保,儿子叶明保额为2万元的寿险。五、理财目标1.为儿
大华股份有限公司(简称大华公司)于2006年在上海证券交易所上市,普通股总数为5亿股,甲、乙分别持有大华公司31%和25%的股份。截至2013年年底,大华公司净资产额为10亿元,最近3年可分配利润分别为3000万元、2000万元和1000万元。2015年2
对于()准备就业的未成年人,职业教育培训机构、用人单位应当将法律知识和预防犯罪教育纳入职业培训的内容。
一农民买了5种化肥,由于仓库地方有限只能将化肥袋子紧贴着排列放置,每个袋子内装一种化肥。化肥会从编织袋中渗出,如果起反应,将降低肥效,所以不能把两种能起反应的化肥装在相邻的袋子中。该农民的化肥种类有N,K,L,M和W,这些化肥仅有的反应关系如下:N与K反应
在新建一个VB工程时,将新建窗体的Name属性设置为TheFirst,则默认的窗体文件名为()。
IndependentWritingDirectionsForthistask,youwillwriteanessayinresponsetoaquestionthatasksyoutostate,exp
最新回复
(
0
)