首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
admin
2019-07-17
95
问题
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
选项
答案
x(1一e
x
)+2
解析
由常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知y
1
=e
x
,y
2
=xe
x
为其两个线性无关的解,代入齐次方程,有
y’’
1
+ay’
1
+by
1
=(1+a+b)e
x
=0 => 1+a+b=0,
y’’
2
+ay’
2
+by
2
=[2+a+(1+a+b)x]e
x
=0 => 2+a=0,
从而a=一2,b=1,故非齐次微分方程为y’’+ay’+by=x。
设特解y
*
=Ax+B,代入非齐次微分方程,得一2A+Ax+B=x,即
Ax+(一2A+B)=x
所以特解为y
*
=x+2,非齐次方程的通解为y=(C
1
+C
2
x)e
x
+x+2。
把y(0)=2,y’(0)=0代入通解,得C
1
=0,C
2
=一1。故所求特解为y=一xe
x
+x+2=x(1一e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/YBN4777K
0
考研数学二
相关试题推荐
已知曲线y=y(x)经过点(1,e一1),且在点(x,y)处的切线方程在y轴上的截距为xy,求该曲线方程的表达式.
求极限:.
[*]
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:考ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
A是三阶矩阵,三维列向量组β1,β2,β3线性无关,满足Aβ1=β2+β3,Aβ2=β1+β3,Aβ3=β1+β2,求|A|.
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0,f’’(0)存在.若求F’(x),并证明F’(x)在(-∞,+∞)连续.
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在.求证:
证明n阶行列式=1-a+a2-a3+…+(-a)n.=1-a+a2-a3+…+(-a)2.
随机试题
槟榔的功效是
g/(m2.aa-1)是()单位
心室肌细胞动作电位与骨骼肌细胞动作电位相比,明显不同的是
会计职业道德教育的主要形式包括接受教育和自我教育。( )
在股票上市公告书中,发行人应转载在招股说明书已披露过的主要财务指标。()
A、 B、 C、 D、 C
K9F1208是一种典型的NANDFlash芯片,芯片内部具有26条地址线和8条数据线,该芯片的存储容量为__________【59】MB。除NANDFlash技术之外的另一种闪存技术是__________【60】F1ash技术。
有以下程序 #include<stdio.h> #include<string.h> main() { printf("%d\n",strlen("0\t\n\0C011\1")); } 程序运行后的输出结果是()。
A、worldcivilizationB、languagedevelopmentC、physicsandchemistryD、literatureC
ThehomelessmakeupagrowingpercentageofAmerica’spopulation.【C1】______homelessnesshasreachedsuchproportionsthatloca
最新回复
(
0
)