首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
admin
2018-02-07
36
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
;
②P
-1
AP;
③A
T
;
④E一
A。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
知α必是矩阵E一
A属于特征值1一
λ的特征向量。
关于②和③则不一定成立。这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/YHk4777K
0
考研数学二
相关试题推荐
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设,证明fˊ(x)在点x=0处连续.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
男性,15岁,6小时前跑步时摔倒,右肘部着地。查体:右肘肿胀,压痛,半屈位畸形,前臂明显肿胀,手部皮肤苍白、发凉、麻木,桡动脉搏动微弱,测前臂组织压为60mmHg。X线检查:肱骨髁上骨折,应给予的紧急处理为
影响产业购买者决策的主要因素有()。
我国心理学家主张把学习分为:知识的学习、______、行为规范的学习。
阅读下列材料,回答问题。负重的河流这是每一本地理书上都提到过的著名河流,一条河流在哪里出现,从哪里经过,又归属于哪里,决不是偶然的事。塔里
(2016·山西)皮亚杰认为,个体适应环境的方式是()
下列属于公安机关必须依法履行的职责的是()
近日,有网友表示了这样的担心,“我支付宝,微信里都有钱,如果我哪天突然意外死了,这些钱会被怎么处理(我的家人并不知道这笔钱)?”一时间引发了共鸣。根据互联网公司的规定,如果长期不使用个人账户,支付宝会注销,微信会回收。这也意味着,个人网络财产很有可能被“充
用户可以通过()两种方式来使用计算机。
辩证唯物主义认识论认为,认识是主体对客体的能动反映。这种能动反映与旧唯物主义的被动的、消极的反映论有很大区别,主要表现在()
Henrycan’tattendtheparty______atTom’shouseatpresentbecauseheispreparingthespeechattheparty______atMarie’s
最新回复
(
0
)