首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
admin
2018-02-07
35
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
;
②P
-1
AP;
③A
T
;
④E一
A。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
知α必是矩阵E一
A属于特征值1一
λ的特征向量。
关于②和③则不一定成立。这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/YHk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
不等式的解集(用区间表示)为[].
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
近年来,美国政府将其业务以合同的方式“外包”,以()
下述有关ARDS的治疗哪些正确()
核素功能测定与下面哪项无关
治疗小儿紫癜属血热妄行型的首选方剂是
一木板放在两个半径r=0.25m的传输鼓轮上面。在图4—48所示瞬时,木板具有不变的加速度a=0.5m/s2,方向向右;同时,鼓轮边缘上的点具有一大小为3m/s2的全加速度。如果木板在鼓轮上无滑动,则此木板的速度为()。
根据本量利公式,下列等式正确的是( )。
根据政府采购法律制度的规定,下列情形中,采购人可以采用邀请招标方式采购的有()。
WilliamFaulknerwasborninOxford,Miss.Hehad【1】education,thenhejoinedtheBritishRoyalAirForceinCanadabecausehew
Howdidhesucceedaccordingtohimself?
Inmanycountriesintheprocessofindustrialization,overcrowdedcitiespresentamajorproblem.Poorconditionsintheseciti
最新回复
(
0
)