首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn 求方程组AX=b的通解.
admin
2019-03-21
49
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/YLV4777K
0
考研数学二
相关试题推荐
下列函数y=f(u),u=ψ(x)中能构成复合函数y=f[ψ(x)]的是[]
下列函数在点x=0处均不连续,其中点x=0是f(x)的可去间断点的是[].
设f(x)=(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
设f(x)=求f(x)在点x=0处的导数.
设f(u)(u>0)有连续的二阶导数且z=满足方程=4(x2+y2),求f(u).
求函数y=的单调区间,极值点,凹凸性区间与拐点.
计算4阶行列式
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3,是导出组Ax=0的解向量的个数为()
随机试题
Wherearethespeakersgoingtostay?
A.髌韧带B.半月板C.后交叉韧带D.翼状襞E.腓侧副韧带位于膝关节囊前壁的是()
奸党罪始创于()。
理论上“八项因素”构成的房租通常称为()。
顾客力量分析是企业特定经营环境分析的重要内容,不包括()。
在儿童早期,促使学生努力获得学习成就的是()。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
①风格的形成也意味着艺术的成熟,风格越强烈,给人的印象越深刻②但冰冻三尺非一日之寒,风格的形成不是一件容易的事,更不能刻意设计而得③颜柳欧赵,苏黄米蔡,风格鲜明,流传千古④它是个人漫长的艺术探索历程,有时甚至要付出一生的精力⑤书法有个性,能形成自己
民主革命时期,中国共产党对民族资产阶级采取又联合又斗争的政策,这是由于民族资产阶级具有
下列叙述中正确的是()。
最新回复
(
0
)