首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn 求方程组AX=b的通解.
admin
2019-03-21
60
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/YLV4777K
0
考研数学二
相关试题推荐
设f(x)为偶函数,且∫-∞+∞f(x)dx=C(C为常数),记F(x)=∫-∞xf(t)dt,则对任意a∈(一∞,+∞),F(一a)等于()
设f(x)在[0,b]可导,f’(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
计算下列各题:(Ⅰ)由方程xy=yx确定x=x(y),求(Ⅱ)方程y-xey=1确定y=y(x),求y"(x);(Ⅲ)设2x-tan(x-y)=∫0x-ysec2tdt,求
设f(x)=求f(x)在点x=0处的导数.
设函数f(x)在x=x0处存在f’+(x0)与f’-(x0),但f’+(x0)≠f’-(x0),说明这一事实的几何意义.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
随机试题
TwoPeople,TwoPathsYoumustbefamiliarwiththesituation:Dadisdriving.Mumistellinghimwheretogo.Heis【B1】______
土地改革完成后,我国广大农民的生产积极性空前高涨。其积极性主要表现在()。
条件致病菌引起医院内感染的主要原因为
有晶鞘纤维的植物有
甲股份有限公司向社会公开募集股份,下列公开募股的表述,不正确的是()。
马某于2006年8月委托甲房地产经纪机构出售其房产,双方签订了委托代理合同,此后马某在合同期间私自将房产出售给关某,该行为属于()。[2006年考试真题]
在审查担保类文件时,公司业务人员应特别注意()。
信息不对称发生的时间是不同的,发生在当事人签约前的,叫做事前不对称,发生在当事人签约后的,叫做事后不对称。事前发生的信息不对称会引起()问题,而事后发生的信息不对称会引起()问题。
关于建设文化宣传橱窗的报告请示××××××:为全面推进我市文化宣传创新,进一步夯实基层基础工作,全面提升基层文化宣传水平,据2012年6月20日市政府会议纪要精神,为全市8个县(区)安装文化宣传橱窗各2块,每块5万元,采取市财政补一块,县(区)财
PlanB:SkipCollegeWhat’sthekeytosuccessintheUnitedStates?OtherthanbecomingarealityTVstar,theansweri
最新回复
(
0
)