首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2017-06-08
61
问题
设A是m×n矩阵.证明:r(A)=1<=>存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“=>”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n.记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “<=”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量a
i
≠0,β的第i个分量b
i
≠0.则A的(i,j)位元素为a
i
b
i
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/x0t4777K
0
考研数学二
相关试题推荐
xy+1/8
A、2π∫12f(r)drB、2π[∫12f(r)dr-∫01f(r)dr]C、2π∫12rf(r2)drD、2π[∫02rf(r2)dr-∫01rf(r2)dr]A
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
设生产与销售某产品的总收益R是产量x的二次函数,经统计得知:当产量x=0,2,4时,总收益R=0,6,8,是确定总收益R与产量x的函数关系。
设生产x单位某产品的总成本C是x的函数C(x),固定成本(即C(0))为20元,边际成本函数为Cˊ(x)=2x+10(元/单位),求总成本函数C(x).
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
(2000年试题,二)设函数f(x)满足关系式f’’(x)+[f’(x)]2=x,且f’(0)=0,则().
随机试题
科学家在克隆某种家蝇时,改变了家蝇的某单个基因,如此克隆出的家蝇不具有紫外视觉,因为它们缺少使家蝇具有紫外视觉的眼细胞。而同时以常规方式(未改变基因)克隆出的家蝇具有正常的视觉。科学家由此表明,不具有紫外视觉的这种家蝇必定在这个基因上有某种缺陷或损坏。
计量资料的统计描述指标包括()
I【C1】______untilthevice-presidentwentbacktohisofficeandknockedonhisdoor.SinceItaughtcollaboration,Idecidedto
在桥梁工程施工中,预应力混凝土工程计量时,完工并经验收的预应力混凝土结构的预应力钢材,按图纸所示或预应力钢材表所列数量以千克计量。后张法预应力钢材的长度按两端锚具间的理论长度计算;先张法预应力钢材的长度按构件的长度计算。()
提前支取的定期储蓄存款,支取部分按()计可付利息。[2011年10月真题]
根据《担保法》规定,办理财产抵押贷款的,除签订抵押合同外,还应()才能取得贷款。
唯物辩证法认为,整体处于统帅的决定地位,部分服从和服务于整体。部分是整体中的部分,部分离不开整体,离开了整体,部分也就不称其为部分。因此,大局的走向决定局部的命运。正因为大局在事物发展中起着主导的决定作用,找准全局性、大局性的问题,也就抓住了工作的重点和中
衡量普通股股东当期收益率的指标是()。
DB2通用数据库为解决所有平台上的异构数据库之间的访问,提供了【】解决方案。
关系模式规范化过程中,若要求分解保持函数依赖,那么模式分解一定可以达到3NF,但不一定能达到______。
最新回复
(
0
)