首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
admin
2017-12-29
113
问题
证明:二次型f(x)=x
T
Ax在||x||=1时的最大值为矩阵A的最大特征值。
选项
答案
A为实对称矩阵,则存在正交矩阵Q,使得 QAQ
—1
=diag(λ
1
,λ
2
,…,λ
n
)=A, 其中λ
1
,λ
2
,…,λ
n
为A的特征值,不妨设A。最大。 作正交变换y=Qx,即x=Q
—1
y=Q
T
y,则 f=x
T
Ax=y
T
QAQ
T
y=y
T
Λy=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
2
y
n
2
, 因为y=Qx,所以当||x||=1时,有 ||x||
2
=x
T
x=y
T
QQ
T
y=||y||
2
=1, 即 y
1
2
+y
2
2
+…+y
n
2
=1。 因此 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
2
y
n
2
≤λ
1
(y
1
2
+y
2
2
+…+y
n
2
)=λ
1
。 又当y
1
=1,y
2
=y
3
=…=y
3
=0时,f=λ
1
,所以f
max
=λ
1
。
解析
转载请注明原文地址:https://kaotiyun.com/show/YLX4777K
0
考研数学三
相关试题推荐
设,求实对称矩阵B,使A=B2.
设A是主对角元为0的四阶实对称阵,E是4阶单位阵,,且E+AB是不可逆的对称阵,求A.
设A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明下列结论:aij=-AijATA=E且|A|=-1.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α1,α1
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
设f(x),g(x)在[a,b]上二阶可导,且f(A)=f(b)=g(A)=0.证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1一eλX的概率密度函数fy(y).
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
求下列极限.
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当依概率收敛于________。
随机试题
古人创制的“二十四节气”最早全部出现在西汉初年的《淮南子》中。()
20世纪80年代以来的行政管理理论的共同特征有()
A.河北、江苏、河南、安徽B.内蒙古、甘肃、宁夏、新疆C.山西、黑龙江、内蒙古D.云南、广西E.浙江、福建、江西
(共用备选答案)A.地西泮B.吲哚美辛C.硝酸甘油D.碘酮E.阿米卡星属于解热镇痛药的是
下列选项中,减少生态影响的工程措施有()。
会计软件运行的基础是()。
除基本工资以外,管理人员还可获得下列薪酬()。专业人员的薪酬方案设计可以采取如下方式()。
在六种职业兴趣类型中,喜欢从事资料工作,有数理分析能力,能够听从指示完成琐细工作的兴趣类型是()。
A公司、B公司于2010年3月1日签订买卖合同。A公司按期供货后,自行决定采用异地托收承付结算方式结算货款。B公司于3月20日接到付款通知,3月21日填制拒付理由书拒绝付款,认为合同中未事先约定明确的结算方式,且托收承付凭证中未注明合同号,后经双方协商改为
ForadevelopingcountrylikeIndiawhoseecologicalandsocio-economicsystemsarealreadyunderpressurefromrapidurbaniza
最新回复
(
0
)