首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2021-07-27
38
问题
设A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关→λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关→[λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]的秩为3→|A|λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YLy4777K
0
考研数学二
相关试题推荐
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
A、 B、 C、 D、 B
设为正项级数,则下列结论正确的是()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设P=,Q为三阶非零矩阵,且PQ=O,则().
设矩阵,三阶矩阵B满足ABA*=E一BA—1,试计算行列式|B|。
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有()
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
随机试题
高钾血症比低钾血症更危险的原因是
对混凝土的骨料,要求具有良好级配,为的是使其达到( )。
下列行政处罚中,行政法规可以设定()
M公司向N公司购买材料一批。M公司在付款时发现,发票的正确金额应该是34000元,N公司却误填为43000元。正确的做法是()。
幼儿最初的美感是()。
美国哥伦比亚大学医学中心的一项最新研究结果显示,临睡前两小时佩戴茶色墨镜,可以有效拦截手机和平板电脑屏幕发出的蓝光,提高睡眠质量。以上结论基于的前提是:
简述当代中国法律体系的特色。
毛泽东强调“以后要非常注意军事,须知政权是由枪杆子中取得的”是在()
Afewyearsagoitwasfashionabletospeakofagenerationgap,adivisionbetweenyoungpeopleandtheirelders.Parents【B1】__
A、Youaredeceived.B、Youaretargeted.C、Youaretracked.D、Youaredisappointed.C
最新回复
(
0
)