首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当A=( )时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
当A=( )时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
admin
2019-08-12
36
问题
当A=( )时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
选项
A、(-2,1,1).
B、
C、
D、
答案
A
解析
由解是3维向量知n=3,由基础解系含有两个解得到3-r(A)=2,从而r(A)=1.由此着眼,只有A中的矩阵符合此要求.
转载请注明原文地址:https://kaotiyun.com/show/XuN4777K
0
考研数学二
相关试题推荐
(10年)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay.η=x+by下简化为
(96年)设函数f(x)=(1)写出f(x)的反函数g(x)的表达式;(2)g(x)是否有间断点、不可导点,若有,指出这些点.
(92年)计算曲线y=ln(1一x2)上相应于0≤x≤的一段弧的长度.
(13年)当x→0时,1—cosx.cos2x.cos3x与αxn为等价无穷小,求n与a的值.
微分方程(y2+x)dx一2xydy=0的通解为______.
(2012年)设函数f(x,y)可微.且对任意x,y都有,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex成立,又设f’(0)存在且等于a(a≠0).求f(x).
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
患者,女,15岁。持续高热1周,近日伴腹痛,腹泻,体格检查:肝肋下2cm质软,脾肋下2cm,腹壁可见玫瑰疹,肥达反应“0”≥1:80.“H”≥1:60。首选抗生素是
根据需要,可以对环境做不同的分类。通常按环境的原理,可将环境分为()等几种。
保证合同约定保证人承担保证责任直至主债务本息还清时为止等类似内容的,视为约定不明,保证期间为主债务履行期届满之日起()。
下列关于借款费用的表述中,正确的有()。
根据保险法律制度的规定,下列有关保险合同成立时间的表述中,正确的是()。
被道教誉为“天下第九名山”,有“蜀道明珠”之称的是()。
耕耘:收获
在群体压力下,成员有可能放弃自己的意见而采取与大多数人一致的行为,这就是()。
利他行为:指人们出于自愿、不指望任何报酬的帮助他人的行为。下列属于利他行为的是()。
设是从总体X中取出的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果()
最新回复
(
0
)