首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
admin
2018-06-27
46
问题
设α
1
,α
2
,…,α
s
是一组两两正交的非零向量,证明它们线性无关.
选项
答案
计算秩. 以α
1
,α
2
,…,α
s
为列向量组构造矩阵A=(α
1
,α
2
,…,α
s
),A
T
A是对角矩阵,并且对角线上的元素依次为||α||
2
,||α||
2
,…,||α||
2
,它们都不为0.于是 r(α
1
,α
2
,…,α
s
)=r(A)=r(A
T
A)=s, 从而α
1
,α
2
,…,α
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Yek4777K
0
考研数学二
相关试题推荐
设直线y=ax与抛物线.y=x2所围成图形的面积为S1,它们与直线x=1所围成图形的面积为S2,并且a<1.(1)试确定a的值,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设曲线方程为y=e-x(x≥0).(1)把曲线y=e-x(x≥0),x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体的体积V(ξ),求满足的a;(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________。
设,A*是A的伴随矩阵,则(A*)-1=_______.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设f(x)连续,求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
危机管理的含义包括()
坚持党在社会主义初级阶段的基本路线不动摇的关键是【】
佛手和香橼的共有功效是()。
A.卡托普利B.呋塞米C.洛伐他汀D.普萘洛尔E.利血平患者,男,35岁,患有先天性双侧肾动脉狭窄。近期血压一直在150/110mmHg左右,药师建议服药控制。该患者禁用的药物是
根据《反不正当竞争法》规定,下列哪些行为属于不正当竞争行为?(2010—卷一—67,多)
项目建设配套条件评估需要考虑的情况有()。
()不符合人本管理思想。
提倡儿童中心论的典型人物是()
中国共产党第十九届中央委员会第五次全体会议强调,要坚持稳中求进工作总基调,以推动高质量发展为主题,以()为主线,以改革创新为根本动力,以满足人民日益增长的美好生活需要为根本目的,统筹发展和安全。
It’sthefrontpartoftheheadwhereeyes,noseandmouthare.It’soneofthetwolongpartsofyourbodybetweenyourshould
最新回复
(
0
)