首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年试题,21)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ(δ>0)内可导,且,则f’+
(2009年试题,21)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ(δ>0)内可导,且,则f’+
admin
2021-01-19
30
问题
(2009年试题,21)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f
’
(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ(δ>0)内可导,且
,则f
’
+(0)存在,且f
’
+(0)=A.
选项
答案
(I)作辅助函数[*]可验证φ(x)满足:φ(a)=φ(b)=0;φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.由罗尔定理可知,在(a,b)内至少有一点ξ,使φ
’
(ξ)=0,即φ
’
(ξ)=f
’
(ξ)[*]亦即f(b)一f(a)=f
’
(ξ)(b一a),命题得证.(Ⅱ)任取x
0
∈(0,δ),则函数f(x)在闭区间[0,x
0
]上连续,在开区间(0,x
0
)内可导,从而根据拉格朗日中值定理可知,存在ξ∈(0,x
0
)c(0,δ),使得f
’
(ξ)=[*]又由于[*],因此对上式两边取x
0
→0
+
时的极限可得[*]由此可知[*]存在,且[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Yr84777K
0
考研数学二
相关试题推荐
曲线上对应于的点处的法线斜率为______。[img][/img]
设D是Oχy平面上以A(1,1),B(-1,1)和C(-1,-1)为顶点的三角形区域,则I=dχdy=_______.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,γ1,γ2,γ3|=21,则|A+B|=________.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
已知方程组的通解是(1,2,-1,0)T+k(-1,2,-1,1)T,则a=_______.
设说明y=f(x)为奇函数,并求其曲线的水平渐近线;
设连续型随机变量X的分布函数和概率密度函数分别为F(x)和f(x),则()
(1987年)求微分方程y〞+2y′+y=χeχ的通解.
(1987年)=_______.
(1993年)求
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)