首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
admin
2020-03-10
66
问题
设f(x)在[0,a]上一阶连续可导,f(0)=0,令
|f’(x)|=M.证明:|∫
0
a
f(x)dx|≤
M.
选项
答案
由微分中值定理得f(x)-f(0)=f’(ξ)x,其中ξ介于0与x之间, 因为f(0)=0,所以|f(x)|=f’(ξ)x|≤Mx,x∈[0,a], 从而|∫
0
a
f(x)dx|≤∫
0
a
|f(x)|dx≤∫
0
a
Mxdx=[*]M.
解析
转载请注明原文地址:https://kaotiyun.com/show/YuD4777K
0
考研数学三
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
证明:=anxn+an-1xn-1+…+a1x+a0。
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设f(x)=|sint|dt,证明f(x)是以π为周期的周期函数;
随机试题
肾上腺素能激动剂的不稳定性表现在
下列关于点型感烟、感温火灾探测器安装要求的叙述中,错误的是()。
《国有资产评估管理办法》中规定了国有资产评估()。
下列属于企业实施多元化战略的风险有()。
人民警察必须把公安机关的利益作为自己全部工作的出发点和归宿。()
8045
为使得开发人员对软件产品的各阶段工作都进行周密地思考,从而减少返工,所以()的编制是很重要的。
すいようび
1930s
Isitrainingoutsidenow?
最新回复
(
0
)