首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2019-01-19
69
问题
设向量组(I):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为
(b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
r),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(I):b
1
,b
2
,…,b
r
,线性无关知r(B)=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}。 且由向量组(I):b
1
,b
2
,…,b
r
,能由向量组(Ⅱ):a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r。 综上所述r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*] 于是有PB=PAK=[*]。 由矩阵秩的性质 r(B)=r(PB)=r[*]=r(K), 即r(B)=r(K)=r,因此向量组(I)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZbP4777K
0
考研数学三
相关试题推荐
(01年)已知fn(χ)满足f′n(χ)=fn(χ)+χn-1eχ(n为正整数),且fn(1)=,求函数项级数fn(χ)之和.
(94年)设常数λ>0而级数薹收敛,则级数【】
对随机变量X和Y,已知EX=3,EY=-2,DX=9,DY=2,E(XY)=-5.设U=2X-y-4,求EU,DU.
乒乓球盒中有15个球,其中有9只新球和6只旧球.第一次比赛时任取3只使用,用后放回(新球使用一次就成旧球).第二次比赛时也任取3只球,求此3只球均为新球的概率_______.(写出计算式即可).
设α1,α2,…,αm为线性方程组Aχ=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βm=t1αm+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βm也为Aχ=0的一个基础解系.
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
设二元函数z=z(x,y)是由方程xexy+yz2=yzsinx+z所确定,求二阶偏导数.
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在点ξ,η∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
在曲线y=e—x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
设f(x)为连续函数,满足=f(x),则f(x)=__________.
随机试题
哪个信息安全评估标准给出了关于IT安全的保密性、完整性、可用性、审计性、认证性、可靠性6个方面含义,并提出了以风险为核心的安全模型
从性质上讲,房产税是一种()
我国的法定节假日共计_________。
尿内儿茶酚胺及VMA升高最常见于
A.胸式呼吸B.腹式呼吸C.潮式呼吸D.平静呼吸E.用力呼吸以膈肌收缩为主的呼吸运动称为()
含碳量为0.8%的碳素钢属于()。
福建工艺品的“三宝”是()。
蛋白质的化学性消化是指蛋白质在胃蛋白酶及由胰液和小肠黏膜细胞分泌的多种蛋白酶及肽酶的共同作用下,水解为氨基酸的过程。()
张某委托刘某购买山地车一辆,刘某到商场后发现山地车脱销,担心张某急需使用,遂为之购买自行车一辆,张某拒收,刘某诉至法院。下列选项中正确的是:
晏阳初是我国著名的教育家,主持待了中华平民教育促进总会所进行的河北定县乡村教育实验,出版了
最新回复
(
0
)