首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为 (b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
admin
2019-01-19
90
问题
设向量组(I):b
1
,…,b
r
能由向量组(Ⅱ):a
1
,…,a
s
线性表示为
(b
1
,…,b
r
)=(a
1
,…,a
s
)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
选项
答案
必要性:令B=(b
1
r),A=(a
1
,…,a
s
),则有B=AK,由定理 r(B)=r(AK)≤min{r(A),r(K)}, 结合向量组(I):b
1
,b
2
,…,b
r
,线性无关知r(B)=r,故r(K)≥r。 又因为K为r×s阶矩阵,则有r(K)≤min{r,s}。 且由向量组(I):b
1
,b
2
,…,b
r
,能由向量组(Ⅱ):a
1
,a
2
,…,a
s
线性表示,则有r≤s,即min{r,s}=r。 综上所述r≤r(K)≤r,即r(K)=r。 充分性:已知r(K)=r,向量组(Ⅱ)线性无关,r(A)=s,因此A的行最简矩阵为[*],存在可逆矩阵P使 PA=[*] 于是有PB=PAK=[*]。 由矩阵秩的性质 r(B)=r(PB)=r[*]=r(K), 即r(B)=r(K)=r,因此向量组(I)线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/ZbP4777K
0
考研数学三
相关试题推荐
(16年)设函数f(u,v)可微,z=z(χ,y)由方程(χ+1)z-y2=χ2f(χ-z,y)确定,则dz|(0,1)=_______.
(15年)设D={(χ,y)|χ2+y2≤2χ,χ2+y2≤2y},函数f(χ,y)在D上连续,则f(χ,y)dχdy=【】
(04年)设有以下命题:【】①(u2n-1+u2n)收敛,则un收敛.②若un收敛,则un+1000收敛.③若>1,则un发散.④若(un+vn)收敛,则都收敛.则以上命题中正确的是
(94年)设常数λ>0而级数薹收敛,则级数【】
(93年)设二次型f=χ12+χ22+χ32+2αχ1χ2+2βχ2χ3+2χ1χ3经正交交换X=PY化成f=y22+2y32,其中X=(χ1,χ2,χ3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.
(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1_不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设函数f(χ)在χ=a的某邻域内连续,且f(a)为极大值.则存在δ>0,当χ∈(a-δ,a+δ)时必有:【】
随机试题
A.清热化湿,调气和血B.清热解毒凉血C.温中燥湿,调气和血D.温中清肠调气休息痢的治法是
简述我国教育经费的主要来源。
预先控制又称为()
下列支气管疾病中,最常见并发咯血的是
急性腹膜炎在中医学中归属于
男,34岁。因反复干咳、咯血2月、发热1周来院门诊。查体:T39.2℃,消瘦,左上肺语颤增强、叩诊呈实音、呼吸音减弱。WBC7.8×109/L,PPD(1结素单位)强阳性,X线胸片示左上肺大片云雾状、密度较低、边缘模糊之阴影。最可能的诊断是
工商局郑某与个体户王某久有积怨,借执行公务之机,以王某销售伪劣商品为由扣押王某营业执照,将其货物查封,查封期间遇暴雨货物淋湿。王某不服,向工商局提出赔偿请求。工商局应作何处理?()
某检察院在对国家机关工作人员张某巨额财产来源不明案进行侦查时,发现其巨额财产三分之二为诈骗所得,三分之一为盗窃所得。关于此案,下列哪一选项是正确的?(2010年卷二27题,单选)
现行增值税法规定,销售额没有达到起征点的,不征增值税;超过起征点的,应就超过起征点的部分销售额依法计算缴纳增值税。()
设f(x)在[0,1]上二阶可导,且f”(x)<0.证明:f(x2)dx≤f().
最新回复
(
0
)