首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn-r线性无关;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn-r线性无关;
admin
2019-01-19
91
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,ξ
1
,…,ξ
n-r
线性无关;
选项
答案
假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
η
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=c
0
b, 其中b≠0,则c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与假设矛盾。 所以η
*
,ξ
1
,…,ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/dbP4777K
0
考研数学三
相关试题推荐
(90年)设f(χ)有连续的导数,f(0)=0且f′(0)=b,若函数在χ=0处连续,则常数A=_______.
(94年)设常数λ>0而级数薹收敛,则级数【】
(97年)设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是【】
(93年)设二次型f=χ12+χ22+χ32+2αχ1χ2+2βχ2χ3+2χ1χ3经正交交换X=PY化成f=y22+2y32,其中X=(χ1,χ2,χ3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
(97年)若二次型f(χ1,χ2,χ3)=2χ12+χ22+χ32+2χ1χ2+tχ2χ3是正定的,则t的取值范围是_______.
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设f(χ)在(-∞,+∞)上二阶导数连续f(0)=0,g(χ)=则a=_______使g(χ)在(-∞,+∞)上连续.
设积分区域D={(x,y)|0≤x≤π,0≤y≤π},计算二重积分I=sinxsinymax{x,y}dxdy.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
随机试题
帕金森病为本虚标实之病,下列哪项为标
男性,42岁。自右背部放射至右腋下疼痛5个月,右下肢乏力4个月,加重伴排尿费力半月。查体:双下肢肌张力增高,右下肢肌力3级,左下肢4级,腱反射右(+++)、左(++),双下肢Babinski征(+)。T5以下痛觉减退左侧明显;右下肢振动觉差。T3水平棘突有
组织的定义包括以下基本要素:()。
永续年金是一组在无限期内金额______、方向______、时间间隔______的现金流。()
根据《合同法》的规定,下列关于赠与人离有撤销赠与权利的表述中,不正确的是( )
现役军人因战、因公致残后因旧伤复发死亡,按照( )对待。
求.
Samplanstoestablishmobilephoneserviceusingthepersonalinformationhehasstolenfromhisformerboss.Whattypeofiden
有以下程序段charch;intk;ch=’a’;k=12;printf("%c,%d,",ch,ch,k);printf("k=%d\n",k);已知字符a的ASCII码值为97,则执行上述
Mychildrenwenttoprivateschool,andgiventhewaythingsareinoureducationsystemIamgladtheydid;but1wishIhadno
最新回复
(
0
)