∫-π/2π/2(x3+sin2x)cos2xdx=_______。

admin2018-04-14  32

问题-π/2π/2(x3+sin2x)cos2xdx=_______。

选项

答案π/8

解析 由题设知
-π/2π/2(x3+sin2x)cos2xdx
=∫-π/2π/2x3cos2xdx+∫-π/2π/2sin2xcos2xdx。
在区间[-π/2,π/2]上,x3cos2x是奇函数,sin2xcos2x是偶函数,故
-π/2π/2x3cos2xdx=0,∫-π/2π/2sin2xcos2xdx=2∫0π/2sin2xcos2xdx.
所以,原式=∫-π/2π/2x3cos2xdx+∫-π/2π/2sin2xcos2xdx=2∫0π/2sin2xcos2xdx
=∫0π/2sin1/222xdx=1/4∫0π/2(1-cos4x)dx
转载请注明原文地址:https://kaotiyun.com/show/Yxk4777K
0

最新回复(0)