首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为( ).
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为( ).
admin
2020-03-02
12
问题
设α
1
,α
2
为齐次线性方程组AX=0的基础解系,β
1
,β
2
为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为( ).
选项
A、k
1
α
1
+k
2
(α
1
-α
2
)+
B、k
1
α
1
+k
2
(β
1
一β
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(α
1
+α
2
)+
答案
D
解析
选(D),因为α
1
,α
1
+α
2
为方程组AX=0的两个线性无关解,也是基础解系,而
为方程组AX=b的一个特解,根据非齐次线性方程组通解结构,选(D).
转载请注明原文地址:https://kaotiyun.com/show/Z3S4777K
0
考研数学一
相关试题推荐
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
设f(x)在(-∞,+∞)内有定义,且则()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
设,B=P-1AP,其中P为3阶可逆矩阵,则B2004-2A2=___________.
设f(x,y)可微。且f’1(一1,3)=一2,f’2(一1,3)=1,令z=f(2x—y,),则dz|(1,3)=___________.
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设则a2=______.
事件A与B相互独立,P(A)=a,P(B)=b,如果事件C发生必然导致A与B同时发生,则A,B,C都不发生的概率为______.
设f(x)有连续的导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt,且当x→0时,F’(x)与x3是同阶无穷小,则k等于()
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
随机试题
与口腔黏膜感染有关的疱疹病毒包括
下列关于我国宪法实施保障的基本方式的表述正确的是:()
下列不能成为背信运用受托财产罪的犯罪主体的是()。
()原则是指民事主体从事民事活动的内容和目的不得违反公共秩序和善良风俗,是现代民法的一项重要法律原则,具有维护社会一般利益以及一般道德观念的重要功能。
某啤酒厂(增值税一般纳税人)销售A型啤酒20吨给副食品公司,开具的增值税专用发票上注明价款58000元,收取包装物押金3000元;销售B型啤酒10吨给宾馆,开具普通发票取得收入32760元,收取包装物押金1500元。该啤酒厂应缴纳的消费税是()元。
决策支持系统的特点之一是
CommunicationsRevolutionCyberspace,datasuperhighway,multi-media—forthosewhohaveseenthefuture,thelinkingofcom
Globalizationisatermusedonlyinthefinancialandacademicworlds.Globalizationcanbebestunderstoodasawayofdoing
A、Studentsmightnotconsiderthemtobeanimportantpartofculture.B、Theysymbolizetherebellionofyouthinthe1950’s.C、
Foralongtime,menwanttoseewhetherlifelesscomputerscanexercisejudgment,makechoices,givebirthtoideas,andplayg
最新回复
(
0
)