首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2019-04-22
100
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0. 设A的对角线元素为λ
1
,λ
2
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
j
b
ij
,因为AB=BA,得 a
i
b
ij
=λ
j
b
ij
因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j,则 CA的(i,j)位元素为C
ij
,AC的(i,j)位元素为c
jj
.于是C
ii
=c
jj
.这里的i,j是任意的,从而 C
11
=C
22
=…=C
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z3V4777K
0
考研数学二
相关试题推荐
设函数f(x)在定义域内可导,y=f(x)的图形如图1—2—2所示,则导函数y=f’(x)的图形为()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA一1)一1=()
举例说明函数可导不一定连续可导.
设函数f(χ)满足χf′(χ)-2f(χ)=-χ,且由曲线y=f(χ),χ=1及χ轴(χ≥0)所围成的平面图形为D.若D绕χ轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(χ);(2)曲线在原点处的切线与曲线及直线χ=1所围成的平面
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
考虑二次型f=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3,问λ取何值时,f为正定二次型?
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设f(x)=3x2+x2|x|,则使f(n)(0)存在的最高阶数n为()
当x→0时,无穷小的阶数最高的是().
随机试题
图中标志表示只准一切车辆________。
患者,女,24岁。经常便秘,大便干结,面色无华,心悸气短,失眠多梦,健忘,口唇色淡,舌淡苔白,脉细,治疗应选()
A、盐酸哌唑嗪B、盐酸克仑特罗C、盐酸多巴胺D、盐酸氯丙那林E、盐酸麻黄碱含有芳伯胺结构的是
子宫肌瘤发病可能的相关因素
改善外商投资环境的主要措施有()。
结合目前我国经济和技术条件、不同地区的供电状况以及消防用电设备的具体情况,具备什么条件的供电可视为一级负荷?
我国社会主义职业道德的特点包括()
明太祖朱元璋称:“我朝罢丞相,设五府、六部、督察院、通政司、大理寺等衙门,分理天下庶务。”其中“五府”为()。
有人说:“最高明的骗子,可能在某个时刻欺骗所有的人,也可能在所有的时刻欺骗某些人,但不可能在所有的时刻欺骗所有的人。”如果上述断定为真,而且世界上总有一些高明的骗子,那么下述哪项断定必定是假的?
道德修养的一个内在要求和重要特征是()
最新回复
(
0
)