首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34,)
设向量组(Ⅰ):α1(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34,)
admin
2019-05-12
20
问题
设向量组(Ⅰ):α
1
(a
11
,a
12
,a
13
),α
2
=(a
21
,a
22
,a
23
),α
3
=(a
31
,a
32
,a
33
);向量组(Ⅱ):β
1
=(a
11
,a
12
,a
13
,a
14
),β
2
=(a
21
,a
22
,a
23
,a
24
),β
3
=(a
31
,a
32
,a
33
,a
34
,),则正确的命题是( )
选项
A、(Ⅰ)相关
(Ⅱ)无关
B、(Ⅰ)无关
(Ⅱ)无关
C、(Ⅱ)无关
(Ⅰ)无关
D、(Ⅱ)相关
(Ⅰ)无关
答案
B
解析
由于A、C两个命题互为逆否命题,一个命题与它的逆否命题同真同假,而本题要求有且仅有一个命题是正确的,所以A、C均错误.如设有向量组:
α
1
=(1,0,0),α
2
=(0,1,0),α
3
=(0,0,0)与β
1
=(1,0,0,0),β
2
=(0,1,0,0),β
3
=(0,0,0,1).显然r(α
1
,α
2
,α
3
)=2,r(β
1
,β
2
,β
3
)=3.
即当α
1
,α
2
,α
3
线性相关时,其延伸组β
1
,β
2
,β
3
可以线性无关,因此,A、C错误.
如果β
1
,β
2
,β
3
线性相关,即有不全为0的χ
1
,χ
2
,χ
3
,使χ
1
β
1
+χ
2
β
2
+χ
3
β
3
=0,即方程组
有非零解,那么齐次方程组
必有非零解,即α
1
,α
2
,α
3
线性相关.所以D错误.故选B.
转载请注明原文地址:https://kaotiyun.com/show/ZA04777K
0
考研数学一
相关试题推荐
设随机变量X服从参数为2的指数分布,令U=求:(U,V)的分布;
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设随机变量X满足|X|≤1,且P(x=-1)=1/8,P(X-1)=1/4,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
求微分方程x3y’’’+2x2y’’一xy’+y=0的通解.
设f(x)在区间[0,1]上可导,f(1)=2x2f(x)dx.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
求幂级数的收敛域.
设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是().
设区域D由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y)]3dxdy,I2=(x+y)3dxdy,I3=sin3(x+y)dxdy,则().
随机试题
工程量计算的依据有()。
体内CO2分压最高的部位是
庐阳公司系某集团公司的全资子公司。因业务需要,集团公司决定庐阳公司分立为两个公司。鉴于庐阳公司已有的债权债务全部发生在集团公司内部,下列哪些选项是正确的?(2007年试卷三第79题)
我国行政首长负责制的行政首长进行决策最重要的关键环节是()。
下列游客行为中,不属于不文明旅游行为的是()。
根据左图的规律,右图“?”处应为()。
在关系中的各元组的(33)。
产品/服务资源的生命周期有四个阶段,分别是需求、获取、经营和管理、回收或分配。其中决定需要多少产品和资源,获取它们的计划,以及执行计划要求的度量和控制的阶段是
ThismonthSingaporepassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparents.Calledthemain
Manycountrieshaveaholidaytocelebrateworkers’rightsonoraroundMay1,butLabourDayinCanadaiscelebratedonthefir
最新回复
(
0
)