首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34,)
设向量组(Ⅰ):α1(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34,)
admin
2019-05-12
39
问题
设向量组(Ⅰ):α
1
(a
11
,a
12
,a
13
),α
2
=(a
21
,a
22
,a
23
),α
3
=(a
31
,a
32
,a
33
);向量组(Ⅱ):β
1
=(a
11
,a
12
,a
13
,a
14
),β
2
=(a
21
,a
22
,a
23
,a
24
),β
3
=(a
31
,a
32
,a
33
,a
34
,),则正确的命题是( )
选项
A、(Ⅰ)相关
(Ⅱ)无关
B、(Ⅰ)无关
(Ⅱ)无关
C、(Ⅱ)无关
(Ⅰ)无关
D、(Ⅱ)相关
(Ⅰ)无关
答案
B
解析
由于A、C两个命题互为逆否命题,一个命题与它的逆否命题同真同假,而本题要求有且仅有一个命题是正确的,所以A、C均错误.如设有向量组:
α
1
=(1,0,0),α
2
=(0,1,0),α
3
=(0,0,0)与β
1
=(1,0,0,0),β
2
=(0,1,0,0),β
3
=(0,0,0,1).显然r(α
1
,α
2
,α
3
)=2,r(β
1
,β
2
,β
3
)=3.
即当α
1
,α
2
,α
3
线性相关时,其延伸组β
1
,β
2
,β
3
可以线性无关,因此,A、C错误.
如果β
1
,β
2
,β
3
线性相关,即有不全为0的χ
1
,χ
2
,χ
3
,使χ
1
β
1
+χ
2
β
2
+χ
3
β
3
=0,即方程组
有非零解,那么齐次方程组
必有非零解,即α
1
,α
2
,α
3
线性相关.所以D错误.故选B.
转载请注明原文地址:https://kaotiyun.com/show/ZA04777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合密度函数为f(x,y)=求随机变量Z=X+2Y的分布函数和密度函数.
设L是不经过点(2,0),(-2,0)的分段光滑简单正向闭曲线,就L的不同情形计算
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
求直线L:在平面π:x一3y+2z一5=0上的投影直线.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:不超过三次取到次品.
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则时间E等于()
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
设则fx’(0,1)=______.
用泰勒公式求下列极限:
将下列函数在指定点处展开为泰勒级数:(Ⅰ),在x=1处;(Ⅱ)ln(2x2+x一3),在x=3处.
随机试题
根据外汇管理法律制度的规定,下列各项中,属于资本项目下外汇收支的有()。(2011年)
风湿性心脏瓣膜病主动脉瓣狭窄最主要的特征是
城市规划对城市经济的影响反映在()。
临时用电设备在5台及其以上或设备总容量在()及其以上者,均应编制临时用电施工组织设计。
下列关于铂金的政策,不正确的是( )。
影响社会化的较重要因素主要有()。
杜牧诗中“东风不与周郎便,铜雀春深锁二乔”的句子写的是哪一场战役?涉及到哪两个主要人物?()
保护耕地对于我国农业发展的最主要的意义是()。
在尊重学生的个别差异上,下列哪些做法效果不好?()
请为当前选中的标题添加批注“散文”。
最新回复
(
0
)