首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(-∞,+∞)是连续函数, (Ⅰ) 求初值的解y=φ(χ); (Ⅱ) 求证y(χ)=∫0χφ(t)f(χ-t)dt是初值问题的解; (Ⅲ) 求y〞+y′=f(χ)的通解.
设f(χ)在(-∞,+∞)是连续函数, (Ⅰ) 求初值的解y=φ(χ); (Ⅱ) 求证y(χ)=∫0χφ(t)f(χ-t)dt是初值问题的解; (Ⅲ) 求y〞+y′=f(χ)的通解.
admin
2018-06-12
99
问题
设f(χ)在(-∞,+∞)是连续函数,
(Ⅰ) 求初值
的解y=φ(χ);
(Ⅱ) 求证y(χ)=∫
0
χ
φ(t)f(χ-t)dt是初值问题
的解;
(Ⅲ) 求y〞+y′=f(χ)的通解.
选项
答案
(Ⅰ)作为二阶线性常系数齐次方程的初值问题来求解. 特征方程λ
2
+λ=0,特征根λ=0,λ=-1,于是通解为y=C
1
+C
2
e
-χ
.由初值[*]C
1
=1,C
2
=-1.因此, y=φ(χ)=1-e
-χ
. (Ⅱ)将φ(χ)=1-e
-χ
代入y(χ)表达式得 y(χ)=∫
0
χ
(1-e
-t
)f(χ-t)dt. ① 下证y(χ)满足方程与初值,就要计算y′(χ)与y〞(χ).y(χ)是由变限积分定义的函数,由于被积函数含参变量χ,故先作变量替换 y(χ)=[*]∫
0
χ
(1-e
s-χ
)f(s)ds=∫
0
χ
f(s)ds-e
-χ
∫
0
χ
e
s
f(s)ds. 现可用变限积分求导法得 y′(χ)=f(χ)-e
-χ
e
χ
f(χ)+e
-χ
∫
0
χ
e
s
f(s)ds=e
-χ
∫
0
χ
e
s
f(s)ds, ② y〞(χ)=-e
-χ
∫
0
χ
e
s
f(s)ds+f(χ). 两式相加得y〞+t′=f(χ). 在①,②中令χ=0得y(0)=0,y′(0)=0. (Ⅲ)由二阶线性非齐次方程通解的结构,并用题(Ⅰ)与题(Ⅱ)知,y〞+y′=f(χ)的通解是 y=C
1
+C
2
e
-χ
+∫
0
χ
(1-e
-t
)f(χ-t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/pUg4777K
0
考研数学一
相关试题推荐
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
设A是m×n矩阵,则齐次线性方程组Aχ=0仅有零解的充分条件是()
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设矩阵相似,求χ,y;并求一个正交阵P,使P-1AP=A.
设函数f(χ)在χ=1的某邻域内连续,且有=-4.(Ⅰ)求f(1),及f′(1);(Ⅱ)若又设f〞(1)存在,求f〞(1).
求下列曲面的方程:以曲线为母线,绕z轴旋转一周而生成的曲面;
设求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ)(Ⅱ)(et-1-t)2dt.
随机试题
外部招聘的优点是()
A、铜蓝蛋白B、转铁蛋白C、结合珠蛋白D、巨球蛋白E、C反应蛋白对小细胞低色素性贫血诊断有较大意义的是
对于妊娠合并甲状腺功能亢进的描述正确的是:
成人引起缺铁性贫血最常见的原因是
经财政部批准.下列情况町以免征房产税的有()。
某项固定资产原值为40000元,预计净残值2000元,折旧年限为4年。采用年数总和法计提折旧,则第三年的折旧额为()元。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
搁浅10年之久的怒江水电项目.终于获得转正机会。2016年3月能源局起草的《水电发展“十三五”规划(征求意见稿)》显示,怒江水电再次入围重点水电发展之列。始于2000年的怒江水电规划,2003年曾因中央高层批文而搁浅。2003年,发改委通过了《怒
ThepresidentisoftenawakenedbyanoisycrowdwhichassemblesontheWhiteHouse.
上述材料体现了哪些矛盾分析的方法?结合材料2、3,运用所学知识说明防止收入差距过分扩大的意义。
最新回复
(
0
)