首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组I:α1,α2,…,αr,可由向量组Ⅱ:β1,β2,…,βs线性表示,则下列命题正确的是
设向量组I:α1,α2,…,αr,可由向量组Ⅱ:β1,β2,…,βs线性表示,则下列命题正确的是
admin
2021-01-19
77
问题
设向量组I:α
1
,α
2
,…,α
r
,可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示,则下列命题正确的是
选项
A、若向量组I线性无关,则r≤s.
B、若向量组I线性相关,则r>s.
C、若向量组Ⅱ线性无关,则r≤s.
D、若向量组Ⅱ线性相关,则r>s.
答案
A
解析
[详解] 因向量组I能由向量组Ⅱ线性表示,所以r(I)≤r(Ⅱ),即
r(α
1
,α
2
,…,α
r
)≤r(β
1
,β
2
,…,β
s
)≤s,
若向量组I线性无关,则r(α
1
,α
2
,…,α
r
)=r,所以r≤5.故应选(A).
[评注] 这是线性代数中的一个重要定理,对定理熟悉的考生可直接得正确答案.
转载请注明原文地址:https://kaotiyun.com/show/ZC84777K
0
考研数学二
相关试题推荐
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
求下列积分。(I)设f(x)=∫1-xe-y2dy,求∫01x2f(x)dx;(Ⅱ)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
求曲线y=cosx(-)与x轴围成的区域绕x轴、y轴形成的几何体体积.
设fn(x)=Cn1cosx—Cn2cos2x+…+(一1)n-1Cnncosnx,证明:对任意自然数n,方程在区间内有且仅有一个根.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0)。(I)试求曲线L的方程;
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求曲线y=f(x2∫0xf(-t2)dt的拐点。
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=Aij<=>ATA=E,且|A|=1;
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
(1994年)设M=cos4χdχ,N=(sin3χ+cos4χ)dχ,P=(χ2sin3χ-cos4χ)dχ,则有【】
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)