首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数ψ(x)及φ(x)是n阶可微的,且ψ(k)(x0)=φ(k)(x0),k=0,1,2,…,n一1.又x>x0时,ψ(n)(x)>φ(n)(x).试证:当x>x0时,ψ(x)>φ(x).
若函数ψ(x)及φ(x)是n阶可微的,且ψ(k)(x0)=φ(k)(x0),k=0,1,2,…,n一1.又x>x0时,ψ(n)(x)>φ(n)(x).试证:当x>x0时,ψ(x)>φ(x).
admin
2019-06-28
41
问题
若函数ψ(x)及φ(x)是n阶可微的,且ψ
(k)
(x
0
)=φ
(k)
(x
0
),k=0,1,2,…,n一1.又x>x
0
时,ψ
(n)
(x)>φ
(n)
(x).试证:当x>x
0
时,ψ(x)>φ(x).
选项
答案
令u
(n-1)
(x)=φ
(n-1)
(x)一ψ
(n-1)
(x). 在[x
0
,x]上用微分中值定理得 u
(n-1)
(x)一u
(n-1)
(x
0
)=u
(n)
(ξ).(x—x
0
),x
0
<ξ<x. 又由u
(n)
(ξ)>0可知u
(n-1)
(x)一u
n-1
(x
0
)>0,且u
(n-1)
(x
0
)=0,所以u
(n-1)
(x)>0,即当 x>x
0
时,φ
(n-1)
(x)>ψ
(n-1)
(x). 同理u
(n-2)
(x)=φ
(n-2)
(x)一ψ
(n-2)
(x)>0. 归纳有u
(n-3)
(x)>0,…,u’(x)>0,u(x)>0.于是,当x>x
0
时,φ(x)>ψ(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/BaV4777K
0
考研数学二
相关试题推荐
=_________。
设z=f[xy,yg(x)],其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求。
23.证明:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);
求函数f(x)=x2ln(1+x)在x=0处的n阶导数。
设。当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为_________。
设ρ=ρ(x)是抛物线y=上任一点M(x,y)(x≥1)处的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算3ρd2ρ/ds2-(dρ/ds)2的值。(在直角坐标系下曲率公式为K=)
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
(07年)设f(x)是区间上的单调、可导函数,且满足∫0f(x)f-1(t)dt=其中f-1是f的反函数,求f(x).
(01年)设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若∫0f(x)g(t)dt=x2ex求f(x).
随机试题
下列对蛋白质的主要生理作用描述不正确的是()。
市场营销的最终目标是交换。()
负责实施设备工程的承包商,从其组织安排上考虑,确定各项工作的施工顺序,这种顺序关系称为( )。
下列关于引起合同价款调整事项的表述,正确的是()。
在准工作状态时配水管道内不充水,由火灾报警系统自动开启雨淋阀后,转换为湿式系统的灭火系统为()灭火系统。
按权责发生制原则,凡是当期已经实现的收入和已经发生或应当负担的费用,都应当作为当期的收入和费用;凡是不属于当期的收入和费用,也不应当作为当期的收入和费用。但款项已在当期收付除外。()
根据公司法律制度的规定,上市公司召开股东大会审议下列事项时,应当以特别决议方式通过的有()。
4,11,30,67,()
Thedeclineinmoralstandards—whichhaslongconcernedsocialanalysts—hasatlastcapturedtheattentionofaverageAmericans.
Itisoneofthebodyparts.Itissentbypostmen.
最新回复
(
0
)