首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。 ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
以下四个命题,正确的个数为( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。 ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
admin
2019-06-29
118
问题
以下四个命题,正确的个数为( )
①设f(x)是(-∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0。
②设f(x)在(-∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
。
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
-∞
+∞
f(x)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(-∞,+∞)上连续的奇函数,且
。但是
∫
-∞
0
f(x)dx=∫
-∞
0
xdx=-∞,∫
0
+∞
f(x)dx=∫
-∞
+∞
xdx=+∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=-x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,
但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/gsN4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设f(x)是周期为4的可导奇函数,且f’(x)=2(x-1),x∈[0,2],则f(7)=_______。
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,xsinxn是比(-1)高阶的无穷小,则正整数n等于()
已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定,求z=z(x,y)的极值。
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
求曲线xy=x2y在点(1,1)处的切线方程与法线方程.
求微分方程y"一y=4cosx+ex的通解.
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
随机试题
小腿部腹股沟反射区的操作力度不宜过重。()
应用PLC检查分析数控机床故障原因需要具备哪些技术基础?
椎间盘位于相邻_______之间,由中央的_______和周围的_______组成。
A、2409.64B、2142.86C、2114.81D、1894.74C
下列不能够报名参加报关员资格考试的人员是:()。
甲公司2018年3月12日向A银行借入专门借款15000万元用于生产线建设。4月1日向建设方支付工程备料款3000万元,5月2日工程送审,6月3日工程备案获得通过,7月1日工程正式动工,当日支付建设方工程款800万元。则甲公司专门借款开始资本化的时间为
下列关于损失事件管理的表述中,错误的有()。
Thisnoticeconcernsallemployeeswhousetheconferencerooms.Startingimmediately,youwillneedtoofficiallyreserveanyc
牛顿、达尔文和爱因斯坦是世界著名的科学家。下列关于他们的成就在人类文明进程中所起到的共同作用的表述,正确的是()
有些大学生喜欢旅游,所有的登山爱好者都喜欢旅游。因此有些大学生也是登山爱好者。以下哪个推理具有与上述推理最为类似的结构?
最新回复
(
0
)