首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。 ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
以下四个命题,正确的个数为( ) ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0。 ②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=。
admin
2019-06-29
128
问题
以下四个命题,正确的个数为( )
①设f(x)是(-∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0。
②设f(x)在(-∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
。
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
-∞
+∞
f(x)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(-∞,+∞)上连续的奇函数,且
。但是
∫
-∞
0
f(x)dx=∫
-∞
0
xdx=-∞,∫
0
+∞
f(x)dx=∫
-∞
+∞
xdx=+∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=-x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,
但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/gsN4777K
0
考研数学二
相关试题推荐
设I1=∫0π/4tanx/xdx,I2=x/tanxdx,则()
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1。证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f"(η)+f’(η)=1。
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b-a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3
函数f(x)=在[-π,π]上的第一类间断点是x=()
设函数f(x)=,则()
[*]
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小量,则()
设函数y=y(x)由参数方程(t>1)所确定,求d2y/dx2|x=9。
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
求极限
随机试题
当代大学生为什么要用为人民服务的人生目的指引人生方向?
郁证的病因是
A.潮气量B.肺活量C.每分通气量D.肺泡通气量E.功能余气量每次呼吸时吸入或呼出的气量称作
由涉水产品带入饮用水中的有害物质无依据可确定容许限值时,需进行
A.4~5天B.6~7天C.7~9天D.10~12天E.14天四肢术后拆线时间是
()是应急救援工作的核心内容之一,其目的是为尽快地控制事故的发展,防止事故的蔓延和进一步扩大,从而最终控制住事故,并积极营救事故现场的受害人员。
LCL—FCL货物交接的运输条款包括()。
领队在出境旅游前应做好的准备工作主要有()。
根据你所学的知识,谈谈运输在物流过程中的作用。假如你是该公司业务员,你将如何选择?为什么?
土地革命战争时期,毛泽东同志以马克思主义为指导,发表了《中国的红色政权为什么能够存在?》《井冈山的斗争》《星星之火,可以燎原》《反对本本主义》等重要著作,这些著作()。
最新回复
(
0
)