首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________。
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________。
admin
2019-08-11
41
问题
设y=e
x
(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________。
选项
答案
y’’一2y’+2y=0
解析
由通解的形式可知,特征方程的两个根是λ
1
,λ
2
=1±i,因此特征方程为(λ一λ
1
)(λ一λ
2
)=λ
2
一(λ
1
+λ
2
)λ+λ
1
λ
2
=λ
2
一2λ+2=0,故所求微分方程为 y’’一2y’+2y=0。
转载请注明原文地址:https://kaotiyun.com/show/ZCN4777K
0
考研数学二
相关试题推荐
设α1=(1+A,1,1,1),α2=(2,2+A,2,2),α3=(3,3,3+A,3),α4=(4,4,4,4+A).问A为什么数时α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求出一个最大线性无关组.
设α1=(2,1,2,3)T,α2=(-1,1,5,3)T,α3=(0,-1,-4,-3)T,α4=(1,0,-2,-1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
如果β1,β2,…,βt可以用α1,α2,…,αs线性表示,并且r(α1,α2,…,αs)=r(β1,β2,…,βt),则α1,α2,…,αsβ1,β2,…,βt.
设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(-1,0,1,0)T,ξ3=(0,1,1,0)T是(Ⅰ)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,-1,0)T是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
已知线性方程组有解(1,-1,1,-1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
设矩阵A=(α1,α2,α3),方程组AX=β的通解为ξ+cη,其中ξ=(1,1,-1)T,η=(-3,4,2)T.记B=(α1,α2,α3,α1+α2+β),方程组BY=β的通解为_______.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
随机试题
小王今年30岁,是某电脑公司市场开发部经理,思维敏锐、干劲十足,不久刚获得某名牌大学硕士学位,目前工资待遇相当高。假如你是小王的主管,你认为以下哪一种激励方式最能增进他的工作绩效()
关于线粒体蛋白质描述不正确的是
A、全补偿系统B、部分补偿系统C、支持教育系统D、治疗系统E、预防系统根据自理模式理论,对2型糖尿病患者进行护理时应使用
按照信息范围的不同,把建设监理信息分为()。
以下业务()可以在与开户社联网的任一信用社办理。
损益类账户一般具有以下特点()。
______thisinformation,theysatdownagaintowait.
超级计算机目前的峰值处理速度为______。
Inanefforttoexplainhowmostoflanguage,whichisnotsodirectlyrelatabletomeaning,derivedfromanonomatopoeicbegi
Americaisdefinitelyatelephonecountry,______(这归功于一个事实,即良好的电话服务),
最新回复
(
0
)