首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分I=∮L2[xf(y)+g(y)]dx+[x2g(y)+2xy2-2xf(y)]dy=0.其中L为平面上任一闭曲线,函数f(y)与g(y)二阶可导,且f(0)=-1,g(0)=1.试求函数f(y)与g(y),并选择任意一条路径计算从点(0,0)到
设曲线积分I=∮L2[xf(y)+g(y)]dx+[x2g(y)+2xy2-2xf(y)]dy=0.其中L为平面上任一闭曲线,函数f(y)与g(y)二阶可导,且f(0)=-1,g(0)=1.试求函数f(y)与g(y),并选择任意一条路径计算从点(0,0)到
admin
2022-07-21
43
问题
设曲线积分I=∮
L
2[xf(y)+g(y)]dx+[x
2
g(y)+2xy
2
-2xf(y)]dy=0.其中L为平面上任一闭曲线,函数f(y)与g(y)二阶可导,且f(0)=-1,g(0)=1.试求函数f(y)与g(y),并选择任意一条路径计算从点(0,0)到点(π,π/2)的积分值.
选项
答案
平面上任一闭曲线的曲线积分为零,故积分与路径无关,故 [*][2xf(y)+2g(y)]=[*][x
2
g(y)+2xy
2
-2xf(y)] 即2xf’(y)+2g’(y)=2xg(y)+2y
2
-2f(y),故必须有[*] 再次对上式求导,得 f’’(y)=g’(y)=y
2
-f(y) 解二阶常系数线性微分方程,得f(y)=C
1
cosy+C
2
siny+y
2
-2.又f(0)=-1,g(0)=1,得到C
1
=0,C
2
=1,从而f(y)=siny+y
2
-2,g(y)=cosy+2y. 选取从点(0,0)到点(π,0),再从点(π,0)到点(π,π/2)的折线y=0及x=π进行积分,所以 I=∫
(0,0)
(π,π/2)
2[xf(y)+g(y)]dx+[x
2
g(y)+2xy
2
-2xf(y)]dy =∫
0
π
2[xf(0)+g(0)]dx+∫
0
π/2
[π
2
g(y)+2πy
2
-2πf(y)]dy=π
2
+[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ZFf4777K
0
考研数学二
相关试题推荐
设n阶矩阵A与B相似,E为n阶单位矩阵,则()
设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F’(2)等于()
广义积分=__________.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+B,B=则(A一E)一1=________.
设y=y(x)由方程确定,则曲线y=y(x)上x=0对应的点处的曲率半径R=__________.
设u=u(x,y)在全平面有连续偏导数,(I)作极坐标变换x=rcosθ,y=rsinθ,求的关系式;(Ⅱ)若求证:u(x,y)=u(0,0)为常数.
设A是三阶矩阵,且特征值为λ1=1,λ2=-1,λ3=2,A*是A的伴随矩阵,E是三阶单位阵,则=______。
设曲线L的方程为(1)求L的弧长;(2)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标.
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0
设y=f(x,t),其中t是由g(x,y,t)=0确定的x,y的函数,且f(x,t),g(x,y,t)一阶连续可偏导,求
随机试题
急性肾小球肾炎的发病机制是()
口服给药的吸收途径主要是经胃肠道吸收。而经胃肠道吸收的影响因素众多,其中影响胃肠道吸收的药物的剂型(广义)因素包括()。
甲为了报复乙,与丙一起对乙施以殴打,致乙全身多处受伤,花去药费若干,误工工资损失若干。事情发生后公安机关行政拘留甲、丙15天。乙出院,向法院起诉要求甲、丙赔偿损失。在审理中,甲因车祸死亡,身后未留有遗产。甲有一个儿子,法院应如何判决?()
一般来说,库存管理的方法主要包括()。
遗传素质决定人的身心发展水平。
有7个学生和7张票,对应剧院里同一排的7个连续座位。每个座位只能安排一个学生.可以内部调换,但每个学生要么按票人座到指定座位,要么正好坐到指定座位旁边。则入座方式有多少种?
数据结构中,与所使用的计算机无关的是数据的______。
Choosethecorrectletter,A,BorC.Ryanchoosesfootballasprojecttopicbecause
Inanagewhereglobalizationisthetrend,learningaforeignlanguagebecomesessential.Becauseofglobalization,citizenso
"MomentofReckoning":U.S.CitiesBurnRecyclablesafterChinaBansImportsA)TheconscientiouscitizensofPhiladelphiacont
最新回复
(
0
)