首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,则A相似于对角阵的充分必要条件是 ( )
A是n阶矩阵,则A相似于对角阵的充分必要条件是 ( )
admin
2015-08-17
33
问题
A是n阶矩阵,则A相似于对角阵的充分必要条件是 ( )
选项
A、A有n个不同的特征值
B、A有n个不同的特征向量
C、A的每个r
i
重特征值λ
i
,r(λ
i
E-A)=n-r
i
D、A是实对称矩阵
答案
C
解析
A相似于对角阵
A有n个线性无关特征向量
对每个r
i
重特征值λ
i
,r(λ
i
E一A)=n一r
i
,即有r
i
个线性无关特征向量(共n个线性无关特征向量).A,D是充分条件,但非必要,B是必要条件,但不充分,n个不同的特征向量,并不一定线性无关.
转载请注明原文地址:https://kaotiyun.com/show/ZQw4777K
0
考研数学一
相关试题推荐
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为m×n矩阵,B为n×p矩阵,证明r(AB)≥r(A)+r(B)-n.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
随机试题
有形净值债务率中的“有形净值”是指
下列词语中,没有错别字的一组是()
患者,男,36岁。口腔内双颊处白斑。检查:口内双侧颊黏膜白色针状小丘疹,呈网状花纹样,有烧灼感,手背皮肤紫红色扁平丘疹。近期未服用过任何药物。此病可能是
成年人甲状腺功能减退将导致()。
可以不办出让手续的情况有()。
某住宅区建筑场地位于北京延庆地区,场地中某钻孔勘探资料如表9—8所示。地下水位埋深4.m,基础埋深3.5m.该钻孔的液化指数k应为()。
古埃及最大的金字塔叫__________金字塔。
教育的最高理想通过()体现出来。
假设随机变量X1,…,Xn相互独立,服从同参数λ的泊松分布.记Sn=Xi+n,当n充分大时,求Sn的近似分布.
[A]"Ijustdon’tknowhowtomotivatethemtodoabetterjob.We’reinabudgetcrunchandIhaveabsolutelynofinancialreward
最新回复
(
0
)