首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种元件的寿命为随机变量且服从指数分布,这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元,如果制得的元件寿命不超过200小时,则须进行加工,费用为100元,为使平均费用较低,问c取值时,用第2种方法较好?
设某种元件的寿命为随机变量且服从指数分布,这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元,如果制得的元件寿命不超过200小时,则须进行加工,费用为100元,为使平均费用较低,问c取值时,用第2种方法较好?
admin
2016-04-11
36
问题
设某种元件的寿命为随机变量且服从指数分布,这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元,如果制得的元件寿命不超过200小时,则须进行加工,费用为100元,为使平均费用较低,问c取值时,用第2种方法较好?
选项
答案
记用第一、第二种方法制得的元件的寿命分别为X、Y,费用分别为ξ、η,则知X、Y的概率密度分别为: [*] 且P(X≤200)=[*],∴Eξ=(c+100)P(X≤200)+c,P(X>200)=c+100p(X≤200),Eη=(2c+100)P(Y≤200)+2cP(Y>200)=2c+100P(Y≤200),于是Eη-Eξ=c+100.[P(Y≤200)-P(X≤200)]=c+100[*],可见c<100[*]时,Eη<Eξ,用第2种方法较好(平均费用较低).
解析
转载请注明原文地址:https://kaotiyun.com/show/ZVw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f"(x)<0,证明:∫01f(x2)dx≤.
设是正交矩阵,b>0,c>0求a,b,c的值;
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设平面区域D={(x,y)x2+y2≤(π/4)2},三个二重积分M=(x3+y3)dxdy,N=cos(x+y)dxdy,P-的大小关系是()
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
设函数F(X)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
随机试题
A.分裂池B.成熟池C.贮存池D.循环池E.边缘池中幼粒细胞属于
用于反应健康功能状态,可以用
PFM连接体的位置较金属铸造桥的连结体位置
下列关于房屋基础的表述,不正确的是()。
关于路基工程石方施工安全要点的说法错误的是()。
甲赠与乙一部手机,一个月后,乙将甲之子丙打成重伤,则()。
蚂蚁:左右
SquishyCellphonesAddaBuzztoCallsVibratingrubbercouldbethenextbigthinginmobilecommunications.Theyallowpeo
Whatarethesetwopeopletalkingabout?
Terrywasimpressedwith______.
最新回复
(
0
)