首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为( )
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为( )
admin
2022-06-09
58
问题
设A=
,其中a<0,方程组Ax=0有非零解,A
*
是A的伴随矩阵,则方程组A
*
x=0的基础解系为( )
选项
A、(1,0,1)
T
B、(1,0,1)
T
,(1,2,-2)
T
C、(2,4,-4)
T
D、(1,0,1)
T
,(2,0,2)
T
答案
B
解析
由Ax=0有非零解,知
|A|=
=-a
2
+2a+24=0
解得a=6或a=-4,又由于a<0,故a=-4
由|A|中有二阶子式
≠0,知r(A)≥2,又由于r(A)<3,故r(A)=2,从而r(A
*
)=1,于是A
*
x=0有3-r(A
*
)=2个基础解,可排除A,C,由于D中两个向量线性相关,故排除D,从而B正确
事实上,由A
*
A=|A|E=0,知A的列向量是A
*
X=0的解,故A
*
x=0的基础解系为(1,0,1)
T
,(1,2,-2)
T
,B正确
转载请注明原文地址:https://kaotiyun.com/show/unf4777K
0
考研数学二
相关试题推荐
设f(χ,y)=则f(χ,y)在点(0,0)处
设f(x)=在(-∞,+∞)内连续,且,则().
设,其中D={(x,y)|x2+y2≤1},则()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
设函数f(x)连续,若F(u,v)=,其中区域Duv为图中阴影部分,则=()[img][/img]
当χ→1时,f(χ)=的极限为().
二次型f(x1,x2,x3)=xTAx=2x2+2x32+4x1x2+8x2x3—4x1x3的规范形是_________.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
随机试题
_______不但在营养方面不可缺少,而且对食品和菜点的色、香、味、形的构成也起着重要作用。
检查脑动脉的仪器条件中,需要调节的是
己知交流电流i(t)的周期T=1ms,有效值I=0.5A,当t=0时,i=,则它的时间函数描述形式是()。
《(期货经纪合同)指引》《期货交易风险说明书》的内容和格式由()制定。
关于事业部制组织形式的说法,正确的是()。
在会计体系中,凭证号是一个重要的要素,在记账凭证和账簿中都是不可缺少的项目,其作用是()。
根据《农村土地承包法》的规定,耕地的承包期为()。
区县组织文艺演出下乡星火工程,为群众举办为期四个月的演出,你是县文化局负责人,如何开展?
某公司刚发了0.6元的股利,在未来三年以15%的增长率分发股利,三年后则以5%的低增速增长,当前的贴现率为12%,求股票价格。
搞清楚什么是社会主义、怎样建设社会主义,关键是
最新回复
(
0
)