首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
admin
2018-07-27
59
问题
设向量β可由向量组α
1
,α
2
,…,α
n
线性表示,证明:表示唯一的充分必要条件是向量组α
1
,α
2
,…,α
n
线性无关.
选项
答案
由条件有k
1
α
1
+k
2
α
2
+…+k
n
α
n
=β…①.必要性.设表示唯一,若λ
1
α
1
+λ
2
α
2
+…+λ
n
α
n
=0…②,①与②两端分别相加,得 (k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
n
+λ
n
)α
n
=β…③,由表示唯一,比较①与③,得k
j
=k
j
+λ
j
(j=1,2,…,n)[*]λ
j
=0(j=1,2,…,n),[*]α
1
,α
2
,…,α
n
线性无关.充分性:设α
1
,α
2
,…,α
n
线性无关,若还有s
1
α
1
+s
2
α
2
+…+s
n
α
n
=β…④,①-④,得(k
1
-s
1
)α
1
+(k
2
-s
2
)α
2
+…+(k
n
-s
n
)α
n
=0,由α
1
,α
2
,…,α
n
线性无关,得k
j
=s
j
(j=1,2,…,n),即④式必为①式,故表示唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZXW4777K
0
考研数学三
相关试题推荐
求微分方程y’’+2y’-3y=ex+x的通解.
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
已知A,B,C都是行列式值为2的3阶矩阵,则D==_______.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ
求arctanx带皮亚诺余项的5阶麦克劳林公式.
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ);(Ⅱ)f(x)=exsinx
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为________.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
假设A是n阶方阵,其秩r(A)=r<n,那么在A的n个行向量中()
随机试题
肿瘤免疫监视中,主要的细胞免疫执行者是
A.递氢作用B.转氨作用C.转酮醇作用D.转酰基作用CoASH作为辅酶参与
短暂性脑缺血发作的特点是
在日本血吸虫生活史中下面哪项是错误的
患儿,男性,5岁。高热1天,腹泻6~7次,为黏液性脓血便,腹痛伴里急后重,反复惊厥,逐渐出现昏睡、神志不清。病前吃过未洗的黄瓜,诊断为细菌性痢疾。其临床类型属于
张大、张二和张三系兄弟,父母早亡。三人共同继承了父母在A县的房屋共五间,房屋的产权证明,法定继承公证书等由张三保管。由于三人均在B城市生活工作,没有在老家居住。5年后,张三由于生意失败,急需资金周转,便将老家五间房屋转卖给位于C城的生意伙伴崔某。不久,张二
重要工程的单桩承载力宜通过现场静载试验确定,在同一条件下试桩数量不宜少于总桩数的1%,并不少于3根。()
把心理学作为一门独立的学科,是德国的________创立的第一个________实验室。
材料1978年改革开放以来,我国国民经济保持持续快速健康发展,现代化建设事业稳步推进,综合国力和国际竞争力显著提高,人民生活总体上达到小康水平。从1978年到2007年,我国国内生产总值由3645亿元增长到24.95万亿元,年均实际增长9.8%
A、Thewomandoesmuchexercise.B、Themandoesmuchexercise.C、Thewomanalwaysgetsupveryearly.D、Themanliftsweightseve
最新回复
(
0
)