设函数f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,△y=f(χ+△χ)-f(χ),其中△χ<0,则( ).

admin2019-08-12  49

问题 设函数f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,△y=f(χ+△χ)-f(χ),其中△χ<0,则(    ).

选项 A、△y>dy>0
B、△y<dy<0
C、dy>△y>0
D、dy<△y<0

答案D

解析 根据微分中值定理,△y=f(χ+△χ)-f(χ)=f′(ξ)△χ<0(χ+△χ<ξ<χ),dy=f′(χ)△χ<0,因为f〞(χ)>0,所以f′(χ)单调增加,而ξ<χ,所以f′(ξ)<f′(χ),于是f′(ξ)△χ>f′(χ)△χ,即dy<△y<0,选D.
转载请注明原文地址:https://kaotiyun.com/show/ZYN4777K
0

最新回复(0)