首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
设α1,α2,…,αn-1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn-1正交,则( )
admin
2019-01-14
25
问题
设α
1
,α
2
,…,α
n-1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n-1
正交,则( )
选项
A、α
1
,α
2
,…,α
n-1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错;
若α
i
(i=1,2,…,n-1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n-1
,β
1
线性无关,β
2
=2β
1
,所以选项A和D错误;故选C。
下证C选项正确:
因α
1
,α
2
,…,α
n-1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的常数k
1
,k
2
,…,k
n-1
,l
1
,l
2
,
使
k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+l
1
β
1
+l
2
β
2
=0,
又因为α
1
,α
2
,…,α
n-1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n-1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, ①
(l
1
β
1
+l
2
β
2
,β
2
)=0, ②
联立两式,l
1
×①+l
2
×②可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。
转载请注明原文地址:https://kaotiyun.com/show/ZjM4777K
0
考研数学一
相关试题推荐
设函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(I)D={(x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为(Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,求:(I)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(v).
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足=0.95的常数μ=________.(ψ(1.96)=0.975)
设有级数,(I)若=0,又(u2n—1+u2n)=(u1+u2)+(u3+u4)+…+收敛,求证:收敛.(Ⅱ)设u2n—1=。u2n=(n=1,2,…),求证:(—1)n—1u2收敛.
设f(x)为非负连续函数,且满足f(x)f(x-t)dt=sin4x,求f(x)在[0,]上的平均值.
设f(x)=是连续函数,求a,b的值.
设F(x)=∫xx+2πesintsintdt,则F(x)().
随机试题
阅读以下文字,回答下列问题。人是生物,要想健康地活着,必须保持体内的菌态平衡。人出生后,各种细菌便相继光顾到人体内,成为人体的终身伴侣。人体自身的细胞有百万亿个,而携带的微生物细胞是人体细胞的10倍。不要认为外来的生物是“异己”,它们也是人体不可缺少的
设A与B是两个随机事件,已知P(A)=0.4,P(B)=0.6,P(A∪B)=0.7,则=________.
辩证唯物主义认为()
(2013年第152题)儿茶酚胺对心肌生物电活动的作用有
咨客中心治疗(client-centered therapy)的代表性先驱人物是
下列关于测量精度的描述中,哪一条是错误的?()
起重机械按形式可分为( )。
下列施工成本管理的措施中,属于组织措施的是()。
“拔苗助长”事与愿违,“庖丁解牛”事半功倍。这两则寓言故事的不同结果反映的同一哲理是()。
A、Sheneedsmoretimetogetreadyforthedinner.B、Shethoughtthedinnerwasatanothertime.C、Sheforgotabouttheplanssh
最新回复
(
0
)