首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
admin
2017-02-28
53
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
=2.证明:
(Ⅰ)存在c∈(0,1),使得f(c)=0;
(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);
(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(Ⅰ)由[*]=2得 f(0)=0,f’
+
(0)=1,f(1)=0,f’
—
(1)=2. 由f’
+
(0)>0,存在x
1
∈(0,1),使得f(x
1
)>f(0)=0; 由f’
—
(1)>0,存在x
2
∈(0,1),使得f(x
2
)<f(1)=0. 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(0,1),使得f(c)=0. (Ⅱ)令h(x)=e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0,由罗尔定理,存在ξ
1
∈(0,c),ξ
2
∈(c,1),使得h’(ξ
1
)=h’(ξ
2
)=0,而h’(x)=e
x
[f(x)+f’(x)]且e
x
≠0,所以f(ξ
1
)+f’(ξ
1
)=0,f(ξ
2
)+f’(ξ
2
)=0. 令φ(x)=e
—x
[f(x)+f’(x)],因为φ(ξ
1
)=φ(ξ
2
)=0,所以存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得φ’(ξ)=0,而φ’(x)=e
—x
[f"(x)一f(x)]且e
—x
≠0,于是f"(ξ)=f(ξ). (Ⅲ)令h(x)=e
—x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0. 由罗尔定理,存在η
1
∈(0,c),η
2
∈(c,1),使得h’(η
1
)=h’(η
2
)=0,而 h’(x)=e
—x
[f’(x)一f(x)]且e
—x
≠0, 所以f’(η
1
)一f(η
1
)=0,f’(η
1
)一f(η
2
)=0. 令φ(x)=e
—2x
[f’(x)一f(x)],因为φ(η
1
)=φ(η
2
)=0,所以存在η∈(η
1
,η
2
)[*](0,1),使得φ’(η)=0,而φ’(x)=e
—2x
[f(x)一3f’(x)+2f(x)]且e
—2x
≠0,于是 f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Zku4777K
0
考研数学一
相关试题推荐
[*]
[*]
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
用集合运算律证明:
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
随机试题
在()桥梁附近不得使用红旗,红灯以免引起误会造成事故
农村信用社的权力机构是()
出现早期龋的可能病因是
A.结节状B.分叶状C.息肉状D.乳头状E.囊状乳腺的良性肿瘤多呈
A.行痹B.痛痹C.着痹D.尪痹E.热痹以关节红肿、灼热疼痛为特点者
以下关于再审的说法,哪些是正确的?
下列关于拍卖标的物交付时间的表述中,正确的是:()。
小明在滑梯上突然被小朋友从后面推了一下,飞快地滑了下来,吓得大声哭叫,下列哪种处理方式最为合理?()
下列做法和说法不正确的是()。
语句DimNewArray(10)AsInteger的含义是
最新回复
(
0
)