首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
如图,已知曲线C1:-y2=1,曲线C2:|y|=|x|+1,P是平面上-点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”. 求证:圆x2+y2=内的点都不是“C1-C2型点”.
如图,已知曲线C1:-y2=1,曲线C2:|y|=|x|+1,P是平面上-点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”. 求证:圆x2+y2=内的点都不是“C1-C2型点”.
admin
2019-06-01
57
问题
如图,已知曲线C
1
:
-y
2
=1,曲线C
2
:|y|=|x|+1,P是平面上-点,若存在过点P的直线与C
1
,C
2
都有公共点,则称P为“C
1
-C
2
型点”.
求证:圆x
2
+y
2
=
内的点都不是“C
1
-C
2
型点”.
选项
答案
显然过圆x
2
+y
2
=[*]内-点的直线l若与曲线C
1
有交点,则斜率必存在;根据对称性,不妨设直线l斜率存在且与曲线C
2
交于点(t,t+1)(t≥0),则l:y=(t+1)=k(x-t)→kx—y+(1+t-kt)=0直线l与圆x
2
+y
2
=[*]内部有交点,故[*],化简得,(1+t-tk)
2
<[*]-(k
2
+1)① 若直线l与曲线C
1
有交点,则[*]x
2
+2k(1+t—kt)x+(1+t-kt)
2
+l=0. △=4k
2
(1+t—kt)
2
-4(k
2
-[*])[(1+t-kt)
2
+1]≥0≥(1+t-kt)
2
≥2(k
2
-1), 化简得,(1+t-kt)
2
≥2(k
2
-1)②. 由①②得,2(k
2
-1)≤(1+t-tk)
2
<[*](k
2
+1)→k
2
<1. 但此时,因为t≥0,[1+t(1-k)]
2
≥1,[*](k
2
+1)<1,即①式不成立; 当k
2
=[*]时,①式也不成立,综上,直线l若与圆x
2
+y
2
=[*]内有交点,则不可能同时与曲线C
1
和C
2
有交点,即圆x
2
+y
2
=[*]内的点都不是“C
1
-C
2
型点”.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZlFq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
请根据以下材料,为四年级的学生设计一个课时的活动课。请写出设计理念、活动目标、活动准备和活动过程。中英文皆可。
以下教学法中,不是以学习者为中心的教学方法的是______。
下列性质中,等腰三角形具有而直角三角形不一定具有的是()。
如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF=______。
用换元法解方程则原方程可化为()。
若(1,1)和(n2,6)是反比例函数图象上的两个点,则一次函数y=kx+b的图象不经过第______象限。
已知点A(x1,y1)、B(x2,y2)在反比例函数的图象上,且x1<0<x2,则y1、y2和0的大小关系().
设a、b、c是单位向量,且a.b=0,则(a-c).(b-c)的最小值为
(x-y)10的展开式中,x7y3的系数与x37的系数之和等于___________________。
某市市区绿化面积约100平方千米,规划10年后人均绿化面积至少比现在提高10%,如果人口年增长率为1.2%,则市区绿化面积每年至少应增加多少平方千米?(精确到0.1平方千米)
随机试题
当R、L、C串联电路呈感性时,总电压与电流间的相位差φ应是()。
人们在社会活动与社会交往过程中所发生的人与人之间的种种社会关系,通常被称为人际关系。__________是指行政组织内部各成员之间的交往关系。
支气管哮喘发作时,最有诊断意义的体征是
杨某14周岁,智力超常,以其某项发明与刘某达成转让协议。该转让协议()。
某银行分行行长要求其分行的一名信贷经理关照一笔贷款,而该信贷经理发现该笔贷款明显不符合规定,则该信贷经理()
王某委托李某保管一枚钻戒,双方没有约定保管费用;由于钻戒价值连城,李某将其小心翼翼地存放在保险箱中,并定期检查;某日,李某打开保险箱时,突然发现钻戒被盗。根据合同法律制度的规定,下列说法正确的有()。
按照世界贸易组织的分类,服务行业包括的部门有()。
求正态方差σ2的置信区间,要用________分布。
紧张、焦虑、恐惧等消极情绪出现,对身心健康都是有害无益的,应该尽量压抑这类情绪。()
国内以三国历史为背景的游戏《三国杀》、《三国斩》、《三国斗》、《三国梦》等,都借鉴了美国西部牛仔游戏《bang!》。中国网络游戏的龙头企业盛大公司状告一家小公司,认为后者的《三国斩》抄袭了自己的《三国杀》。如果盛大公司败诉,则《三国斩》必定知名度大增,这等
最新回复
(
0
)