首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
admin
2021-01-28
113
问题
设f(x)∈c[a,6],在(a,b)内二阶可导
(Ⅰ)若fA=0,fB<0,f’
+
A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’
2
(
n
)=0;
(Ⅱ)若fA=fB=∫
a
b
f(x)dx=0,证明:存在η∈(a,b),使得f”(η)=f(η)。
选项
答案
(Ⅰ)因为f’
+
A>0,所以存在c∈(a,6),使得fC>fA=0,因为fCfB<0, 所以存在x
0
∈(c,b),使得f(x
0
)=0;因为fA=f(x
0
)=0,由罗尔定理,存在x
i
∈(a,x
0
),使得f’(x
1
)=0。 令φ(x)=f(x)f’(x),由φA=φ(x
1
)=0,根据罗尔定理,存在ζ∈(a,x
1
)∈(a,b),使得φ’(ζ)=0.而φ’(x)=f(x)f”(x)+f’
2
(x),所以f(ζ)f”(ζ)+f’
2
(x)=0。 (Ⅱ)令F(x)=∫
0
x
f(t)dt,因为FA=FB=0,所以由罗尔定理,存在c∈(a,b),使得 F’C=0,即fC=0。 令h(x)=e
x
f(x),由hA=hC=hB=0,根据罗尔定理,存在ζ
1
∈(a,c),ζ
2
∈(c,b), 使得h’(ζ
1
)=h’(ζ
2
)=0,则h’(x)=e
x
[f(x)+f’(x)],所以f(ζ
1
)+f’(ζ
1
)=0,f(ζ
2
)+f’(ζ
2
)。 再令G(x)=e
-x
[f(x)+f’(x)],由G(ζ
1
)=G(ζ
2
)=0,根据罗尔定理,存在η∈(ζ
1
,ζ
2
)。 ∈(a,b),使得G’(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Zlx4777K
0
考研数学三
相关试题推荐
微分方程yf’’-4y=xe2x+2sinx的特解形式为().
设z=z(x,y)是由9x2一54x),+90y2一6yz一z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
设平面区域D1={(x,y)|0≤x≤1,1-x≤y≤1),D2={(x,y)|0≤x≤1,1-≤y≤1},二重积分则I1,I2,I3的大小关系为()
若连续函数满足关系式则f(x)等于()
求微分方程满足初始条件y(e)=2e的特解.
设则∫-15f(x-1)dx______.
设求
若f(x)在x=0的某邻域内二阶连续可导,且则下列正确的是().
若当x→0时,sin(kx2)~1一cosx,则k=___________.
随机试题
工资的形式包括()
内伤发热的特点有
置换碘量法测定硫酸铜的含量,硫酸铜与硫代硫酸钠的摩尔比为2:1。()
A.推动作用B.温煦作用C.防御作用D.中介作用激发和促进人体生长发育,依赖于气的
晚期妊娠时阴道无痛性流血,首先应考虑
A、医疗机构配制的制剂B、医疗机构向患者提供的药品C、医疗机构购进的进口药品D、常用药品和急救药品需要取得医疗机构制剂许可证,配制某个品种时还需取得批准文号的是
主观世界和客观世界的关系是()。
相对人可以催告法定代理人在()内对限制民事行为能力人订立的合同追认。
决定的正文部分由制发决定的根据、执行要求和结尾三大部分组成。()
以下各项中,属于对著作权的合理使用的是()。
最新回复
(
0
)