首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T,是线性方程组Ax=0的两个解, (1)求A的特征值与特征向量; (2)已知正交变换x=Qy,把二次型f=xTAx化为标准形,求矩阵Q和A。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T,是线性方程组Ax=0的两个解, (1)求A的特征值与特征向量; (2)已知正交变换x=Qy,把二次型f=xTAx化为标准形,求矩阵Q和A。
admin
2021-04-16
59
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
,是线性方程组Ax=0的两个解,
(1)求A的特征值与特征向量;
(2)已知正交变换x=Qy,把二次型f=x
T
Ax化为标准形,求矩阵Q和A。
选项
答案
(1)由题设,可知Aα
1
=0=0α
1
,Aα
2
=0=0α
2
,所以λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
是A的属于特征值0的两个线性无关的特征向量;又A的各行元素之和均为3,所以 [*] 即λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
是A的属于特征值3的特征向量。 因此,A的特征值为0,0,3,属于特征值0的所有特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
是不全为零的任意实数),属于特征值3的所有特征向量为k
3
α
3
(k
3
为任意非零实数)。 (2)先将α
1
,α
2
正交化,令ζ
1
=α
1
=(-1,2,-1)
T
,ζ
2
=α
2
-(α
1
,ζ
1
)ζ
2
/(ζ
1
,ζ
1
)=(1/2)(-1,0,1)
T
,再将ζ
1
,ζ
2
,α
3
单位化,得 β
1
=ζ
1
/‖ζ
1
‖=[*](-1,2,-1)
T
,β
2
=ζ
2
/‖ζ
2
‖=[*](-1,0,1)
T
,β
3
=α
3
/‖α
3
‖=[*](1,1,1)
T
,所以正交矩阵Q=
1
(β
1
,β
2
,β
3
),即 Q=[*] 又记D=[*], 则Q
T
AQ=D,所以A=QDQ
T
=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/Zpx4777K
0
考研数学三
相关试题推荐
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为由切比雪夫不等式得P{|X+Y-1|≤10}≥().
2
幂级数的和函数为_____________.
在反常积分中收敛的是
设常系数线性微分方程y’’+ay’+2y=bex的一个特解为y=(1+x+ex)ey,则常数a,b的值分别为
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=.
设A为n阶矩阵,下列结论正确的是().
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
某五元齐次线性方程组的系数矩阵经初等变换化为则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
设随机事件A与B为对立事件,0<P(A)<1,则一定有()
随机试题
以下对硫酸生产中二氧化硫催化氧化采用“两转两吸”流程叙述正确的是()。
瀑布模型的提出为软件工程作出了巨大贡献,但它也存在不足,这主要体现在()
治疗外感风寒兼气滞胸脘满闷、恶心呕逆者,宜首选
《中国药典》(2000年版)检查葡萄糖酸锑钠中的砷盐时,采用
在计算设备进口从属费时,消费税的计算基数中通常应包括()。
甲服装生产企业2015年5月与乙公司达成债务重组协议.甲以自产的服装抵偿所欠乙公司一年前发生的债务150万元,该服装成本100万元,市场价值120万元。另外甲企业库存衣服因火灾发生损失,账面成本为5万元,其中外购原材料成本3万元。就这两项业务甲企业应纳的企
党的十八大报告提出,解决好农业农村农民问题是全党工作重中之重。解决“三农”问题的根本途径是()
意识对物质的依赖性,主要表现在意识依赖于()。
大禹治水时,几千人都直接受他领导,因此他非常忙,常常废寝忘食,他的岳父建议他把十个人分为一组,十个组为一小队,十个小队为一个大队,只有大队长才直接被他领导,这样大禹既能工作好,又有休息时间。这主要应用了管理的:
()分类广告()自动弹启式广告()三维广告()封面日期
最新回复
(
0
)