首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
admin
2018-12-21
68
问题
设A=(α
1
,α
2
,α
3
,α
4
),α
i
(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ
1
=(-2,0,1,0)
T
,ξ
2
=(1,0,0,1)
T
,则线性无关向量组是 ( )
选项
A、α
1
,α
2
.
B、α
1
,α
3
.
C、α
1
,α
4
.
D、α
3
,α
4
.
答案
A
解析
由Ax=0的基础解系为ξ
1
=(-2,0,1,0)
T
,ξ
2
(1,0,0,1)
T
,知r(A)=2,所以A中有两个线性无关列向量,则将ξ
1
,ξ
2
代入方程有一2α
1
﹢α
3
=0,α
1
﹢α
4
=0,即α
1
=-α
4
=
,
因此可知α
1
,α
3
;α
1
,α
4
;α
3
,α
4
线性相关,故由排除法,应选(A).
转载请注明原文地址:https://kaotiyun.com/show/a8j4777K
0
考研数学二
相关试题推荐
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
随机试题
决策民主化的特征有()
平等原则是指()。
A、遗传性球形红细胞增多症B、地中海贫血C、遗传性椭圆形红细胞增多症D、免疫性血小板减少性紫癜E、自体免疫性溶血性贫血以皮肤黏膜及内脏出血为主要表现的疾病是()
工程量清单计价中,分部分项工程的综合单价由完成规定计量单位工程量清单项目所需( )等费用组成。
固定资产变动包括()。
外部培训具体应包括()。
请认真阅读下文,并按要求作答。一个小村庄的故事山谷中,早先有过一个美丽的小村庄。山上的森林郁(yù)郁葱葱,村前河水清澈(chè)见底,天空湛(zhàn)蓝,空气清新甜润。村里住着几十户人家。不知从什么时候起,家家有了锋利的斧
取保候审由检察机关执行。()
当前微机上运行的Windows属于()。
Youmusthaveseenalotofinterestingmovies,______?
最新回复
(
0
)