首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,齐次线性方程组Ax=0有两个线性无关的解,则( )
设A是n阶矩阵,齐次线性方程组Ax=0有两个线性无关的解,则( )
admin
2022-06-09
64
问题
设A是n阶矩阵,齐次线性方程组Ax=0有两个线性无关的解,则( )
选项
A、A
*
x=0的解均是Ax=0的解
B、Ax=0的解均是A
*
x=0的解
C、Ax=0与A
*
x=0无非零公共解
D、Ax=0与A
*
x=0恰好有一个非零公共解
答案
B
解析
由Ax=0有两个线性无关的解,知n-r(A)≥2,即r(A)≤n-2,从而A中n-1
阶子式全为0,故A
*
=0,所以A
*
=0有n-r(A
*
)=n个基础解,又AA
*
=A
*
A=
|A|E=0(因为A不可逆,所以|A|=0),所以由Ax=0,有A
*
Ax=0,即Ax=0的
解均是A
*
x=0的解,B正确,显然可排除A
对于Ax=0与Bx=0,当r(
521)≤r(A)+r(B)<n时,
x=0有非零解,故排除C
Ax=0与A
*
x=0恰有一个非零公共解,需要条件n-r(
)=1
故排除D
转载请注明原文地址:https://kaotiyun.com/show/a9f4777K
0
考研数学二
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
曲线的渐近线条数为()
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则
曲线y=的渐近线有().
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么下列向量α1一α2,α1+α2一2α3,,α1一3α2+2α3中能导出方程组Ax=0解的向量共有()
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f’(x)<0,f’’(x)>0,则当x>0时,有()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=G(x)=,则当x→0时,F(x)是G(x)的().
设函数μ(x,y)=φ(x+y)+φ(x一y)+∫x-yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
随机试题
试述在述谓结构中,谓词是处于支配地位的核心成分。
A.磁共振成像B.CT扫描C.骨ECTD.活检E.免疫组化能准确显示鼻窦肿瘤病变范围并可鉴别肿瘤和炎症的诊断方法是
胸穿抽气一般取锁骨中线第2肋间或腋中线第4~5肋间。
腹泻脱水患儿补液后排尿,此时输液瓶中尚有不含钾液体200ml,此液体中最多可加入多少10%氯化钾()
下列关于房地产居间与房地产代理的主要区别的表述中,正确的有()。
建立信息与目前事件状态之间的关系,然后由目前事件反证原有信息,若反证结果与原有信息偏误较大,则证明信息来源有误或过时,这是信息辨伪的()。
下列情况中,需要进行不定期清查的有()。
秦代最重要的宫殿建筑群后来被烧毁的是()。
影响植物分布最重要的条件是______;自然带最明显的标志是______。
Theoldconcernsloseimportanceandsomeofthemvanishaltogether.
最新回复
(
0
)