首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( ).
admin
2020-09-25
123
问题
设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(I):α
1
,α
2
,…,α
m-1
线性表示,记向量组(Ⅱ):α
1
,α
2
,…,α
m-1
,β,则( ).
选项
A、α
m
不能由(I)线性表示,也不能由(Ⅱ)线性表示
B、α
m
不能由(I)线性表示,但可由(Ⅱ)线性表示
C、α
m
可由(I)线性表示,也可由(Ⅱ)线性表示
D、α
m
可由(I)线性表示,不可由(Ⅱ)线性表示
答案
B
解析
因为β可由向量组α
1
,α
2
,…,α
m
线性表示,从而可得存在k
1
,k
2
,…,k
m
使得
我们有k
m
≠0.否则,
从而可知β可由α
1
,…,α
m-1
线性表示,矛盾.由于k
m
≠0,所以α
m
=
,从而可知α
m
可由α
1
,α
2
,…,α
m-1
,β线性表示.
所以选项A,D不对.
下证α
m
不能由(I)线性表示,否则,若
则
所以β可由α
1
,α
2
,…,α
m-1
线性表示,矛盾.从而可得α
m
不能由(I)线性表示.故选B。
转载请注明原文地址:https://kaotiyun.com/show/aJx4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数f(x)=(0<0<b),且EX2=2,则=_______
函数f(x)=上的平均值为________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
(11年)设函数f(χ)在区间[0,1]上具有连续导数,f(0)=1,且满足f′(χ+y)dχdy=f(t)dχdy,其中Dt={(χ,y)|0≤y≤t-χ,0≤χ≤t)(0<t≤1).求f(χ)表达式.
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
随机试题
保护思想自由的人争论说,思想自由是智力进步的前提条件。因为思想自由允许思考者追求自己的想法,而不管这些想法会冒犯谁,以及会把他们引到什么方向。然而,一个人必须挖掘出与某些想法相关的充分联系,才能促使智力进步,为此。思考者需要思考法则。所以,关于思想自由的论
Researchershavefoundthatpeoplewhoareeasilygettingangry,fearfuloroverlysensitivearelesslikelytoforgivethanpeo
要比较甲、乙两厂某工种工人某职业病患病萃的高低,采取标准化法的原理是
单一经营战略的优点在于()。
代理记账机构接受委托,可以办理( )业务。
关于年金,下列说法错误的是()。
连锁经营企业实行统一的配送具有的作用不包括()。
以相关者利益最大化作为财务管理目标的优点有()。
对于因未达账项而使企业银行存款日记账余额和银行对账单余额出现的差异,无须作账面调整,待结算凭证到达后再进行账务处理,登记入账。()
关于勤劳和节俭,正确的认识有()
最新回复
(
0
)