首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为 令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求 (Ⅰ)Y的概率密度FY(y); (Ⅱ)Cov(X,Y); (Ⅲ)F(-,4).
设随机变量X的概率密度为 令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求 (Ⅰ)Y的概率密度FY(y); (Ⅱ)Cov(X,Y); (Ⅲ)F(-,4).
admin
2019-03-19
73
问题
设随机变量X的概率密度为
令Y=X
2
,F(χ,y)为二维随机变量(X,Y)的分布函数.求
(Ⅰ)Y的概率密度F
Y
(y);
(Ⅱ)Cov(X,Y);
(Ⅲ)F(-
,4).
选项
答案
(Ⅰ)Y的分布函数为F
y
(y)=P(Y≤y)=P(X
2
≤y) y≤0时,F
Y
(y)=0,∴f
Y
(y)=F′
Y
(y)=0; y>0时,F
Y
(y)=[*] 若[*]<1即0<y<1时,F
Y
(y)=[*] ∴.f
Y
(y)=F′
Y
(y)=[*] 若1≤[*]<2即1≤y<4时,F
Y
(y)=[*] ∴f
Y
(y)=F′
Y
(y)=[*] 若[*]≥2即y≥4时,F
Y
(y)=[*]=1,∴f
Y
(y)=F′
Y
(y)=0,故 [*] (Ⅱ)cov(X,Y)=cov(X,X
2
)=E(X
3
)-EX.E(X
2
),而 [*] 代入得cov(X,Y)=[*] (Ⅲ)F(-[*],4)=P(X≤-[*],Y≤4)=P(X≤-[*],X
2
≤4)=P(X≤-[*],|X|≤2) =P(X≤-[*],-2≤X≤2)=P(-2≤X≤-[*]) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zeP4777K
0
考研数学三
相关试题推荐
[*]
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设A是n阶矩阵,若存在正整数后,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
计算积分∫—11dy+sin3y)dx。
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
设α1,α1,…,αm,β1,β2,…,αm,γ线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
[2018年]设数列{xn)满足:x1>0,(n=1.2.…).证明.{xn)收敛,并求
随机试题
下图展示了经济的周期性运动(经济周期)。以上示意图代表了经济周期的不同阶段。从A到B是政府想要实现的商业活动的理想增长状况。经济周期展示了在政府不采取任何影响措施的情况下,某段时间内(通常指10年)经济中的商业活动水平。现代经济已经出现由经济周期所引发
请结合实例阐述艺术活动的基本特征。
男性,36岁,下肢静脉曲张,医生检查时,让病人平卧,下肢抬高,使下肢静脉排空,在大腿根部扎止血带,压迫大隐静脉,之后站立,立即松开止血带,进行观察,此项检查的目的是了解
患者饱餐后上腹部持续疼痛1天。查体:上腹部压痛、反跳痛。应首先考虑的是
渗流流速v与水力坡度J的关系是()。[2013年真题]
下列关于《中华人民共和围文物保护法》,说法错误的是()。
进出境货物的报关包括()。
在下列商品中,其需求具有季节性特征的是()。
按房屋的层次和高度可分为()。
个体对自己是否能够胜任某种任务的判断和知觉,称为——。
最新回复
(
0
)