首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为 令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求 (Ⅰ)Y的概率密度FY(y); (Ⅱ)Cov(X,Y); (Ⅲ)F(-,4).
设随机变量X的概率密度为 令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求 (Ⅰ)Y的概率密度FY(y); (Ⅱ)Cov(X,Y); (Ⅲ)F(-,4).
admin
2019-03-19
83
问题
设随机变量X的概率密度为
令Y=X
2
,F(χ,y)为二维随机变量(X,Y)的分布函数.求
(Ⅰ)Y的概率密度F
Y
(y);
(Ⅱ)Cov(X,Y);
(Ⅲ)F(-
,4).
选项
答案
(Ⅰ)Y的分布函数为F
y
(y)=P(Y≤y)=P(X
2
≤y) y≤0时,F
Y
(y)=0,∴f
Y
(y)=F′
Y
(y)=0; y>0时,F
Y
(y)=[*] 若[*]<1即0<y<1时,F
Y
(y)=[*] ∴.f
Y
(y)=F′
Y
(y)=[*] 若1≤[*]<2即1≤y<4时,F
Y
(y)=[*] ∴f
Y
(y)=F′
Y
(y)=[*] 若[*]≥2即y≥4时,F
Y
(y)=[*]=1,∴f
Y
(y)=F′
Y
(y)=0,故 [*] (Ⅱ)cov(X,Y)=cov(X,X
2
)=E(X
3
)-EX.E(X
2
),而 [*] 代入得cov(X,Y)=[*] (Ⅲ)F(-[*],4)=P(X≤-[*],Y≤4)=P(X≤-[*],X
2
≤4)=P(X≤-[*],|X|≤2) =P(X≤-[*],-2≤X≤2)=P(-2≤X≤-[*]) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/zeP4777K
0
考研数学三
相关试题推荐
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则=________。
设A是n阶矩阵,若存在正整数后,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}。
设生产某产品的固定成本为60000元,可变成本为20元/件,价格函数为P=60—(P是单价,单位:元;Q是销量,单位:件),已知产销平衡,求:(Ⅰ)该商品的边际利润;(Ⅱ)当P=50时的边际利润,并解释其经济意义;(Ⅲ)使得利润最大的定价P。
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
[2018年]差方程△2yx-yx=5的通解为_________.
随机试题
简述克服行政绩效制约因素的途径。
诗句“君不见黄河之水天上来,奔流到海不复回"出自诗作()
设,f(u)为可微函数,则()。
设事件A、B互不相容,且P(A)=p,P(B)=q,则等于()。[2012年真题]
如果合同预计总成本超过合同预计总收入,应将预计损失确认为当期的合同费用。()
企业编写校园招聘记录表需要获取应聘者的有关信息。内容包括()。
下列选项中,属于西方古典经济学内容的是()。
党的十七大通过的党章把“和谐”与“富强、民主、文明”一起作为社会主义现代化建设的目标写入了社会主义初级阶段的基本路线,其原因在于社会和谐是()。
以下程序中,while循环的循环次数是()。main(){inti=0;while(i<10){if(i<1)continue;if(i==5)break;
在“学生体检表”中,有“身高”、“体重”、“性别”等项。若需要查找出身高在155以公分以上而体重在40公斤以下的女生,在下列选择查询的条件表达式中正确的是()。
最新回复
(
0
)