首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
admin
2020-08-03
8
问题
讨论线性方程组
的解的情况,在线性方程组有无穷多解时,求其通解。
选项
答案
系数矩阵为A=[*],增广矩阵为 [*] 从而|A|=(a+3)(a-1)
3
当a≠-3且a≠1时,方程组有唯一解; 当a==1时,r(a)=r(A,b)=1,方程组有无穷多解,对增广矩阵作初等变换 [*] 从而所对应的齐次方程组的基础解系为 ξ
1
=(-1,1,0,0)
T
,ξ
21
=(-1,0,1,0)
T
,ξ
3
=:(-1,0,0,1)
T
, 特解为η
*
=(1,0,0,0)
T
,则方程通解为 χ=η
*
+k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
,k
1
,k
2
,k
3
为任意常数。 当a=-3时,r(A)=r(A,b)=3,方程组有无穷多解.对增广矩阵作初等变换 [*] 从而所对应的齐次方程组的基础解系为ξ=(1,1,1,1)
T
,特解为η
*
=(-2,-1,-4,0)
T
, 则方程通解为χ=η
*
+kξ,k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/aMv4777K
0
考研数学一
相关试题推荐
已知方阵A=[α1α2α3α4],α1,α2,α3,α4均为n维列向量,其中α2,α3,α4线性无关,α1=2α2—α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的解.
设αi=[αi1,αi2,…,αin]T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=[b1,b2,…,bn]T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=O的解,则m=______.
设n阶矩阵A=(α1,α2,…αn),B=(β1,β2,β2),AB=(γ1,γ2,…,γn),令向量组(I):α1,α2,…αn;(Ⅱ):β1,β2,β2;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
[2008年]设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______.
[2013年]已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
随机试题
表征影像显示标准的性质的是
A.针对传染病流行的“三环节”的措施B.以接种疫苗为主的综合措施C.加强疫情和病毒变异的监测D.以消灭传染源为主的综合措施E.切断传播途径为主的措施预防和控制下列疾病,主要采取哪项措施麻疹
低渗性脱水时,一般不出现下列哪项改变
下列哪个基因被认为与类风湿关节炎的发病和发展无关
鹿茸的主治病证有( )。
当远期月份合约的价格大于近期月份合约的价格时,市场处于反向市场。()
在经营租赁方式下,租入的固定资产作为公司的固定资产入账进行管理,在分析公司长期偿债能力时,应特别考虑租赁费用对公司偿债能力的影响。()
()是企业为了实现生产经营的目标,采用科学的方法,根据岗得其人、人得其位、适才适所的原则,实现人力资源与其他物力、财力资源的有效结合而进行的一系列管理活动的总称。
现代汉语的动词不能充当主语。(厦门大学2016)
HospitalityAnAmericanfriendhas【T1】______youtovisithisfamily.Butif【T2】______anAmerican’shomebefore,maybeyou’re
最新回复
(
0
)