设M=∫-π/2π/2(sinx+x)/(1+x2)dx,N=∫-π/2π/2(sin3x+cos4x)dx,P=∫-π/2π/2(x2sin3x-cos4x)dx,则有( )。

admin2022-08-12  25

问题 设M=∫-π/2π/2(sinx+x)/(1+x2)dx,N=∫-π/2π/2(sin3x+cos4x)dx,P=∫-π/2π/2(x2sin3x-cos4x)dx,则有(    )。

选项 A、M<N<P
B、N<P<M
C、M<P<N
D、P<M<N

答案D

解析 根据函数的奇偶性可知,M=∫-π/2π/2(sinx+x)/(1+x2)dx=0,N=∫-π/2π/2(sin3x+cos4x)dx=∫-π/2π/2cos4xdx>0,P=∫-π/2π/2(x2sin3x-cos4x)dx=-∫-π/2π/2cos4xdx<0,则有P<M<N。故本题选D。
转载请注明原文地址:https://kaotiyun.com/show/aOtv777K
0

最新回复(0)