首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:bx+2cy+3a=0 l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:bx+2cy+3a=0 l3:cx+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-07-27
42
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0
l
2
:bx+2cy+3a=0
l
3
:cx+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
考虑由三直线方程联立所得线性方程组 [*] 则三直线交于一点[*])=2,其中 [*] 必要性 由r([*]|=3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]=0,又a、b、c不全相等(否则三直线重合,从而有无穷多交点,与必要性假定交于一点矛盾),[*]a+b+c=0. 充分性 若a+b+c=0,由必要性证明知|[*])<3.又系数矩阵A中有一个2阶子式 [*] 方程组(*)有惟一解,即三直线交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/aXW4777K
0
考研数学三
相关试题推荐
求y’’-7y’+12y=x满足初始条件y(0)=的特解.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
设z=f(x,y)是由方程x=y+φ(y)所确定的二次可微函数,求
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
已知A是n阶对称矩阵,且A可逆,如(A-B)2=E,化简(E+A-1BT)T(E-BA-1)-1.
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
求cosx的带皮亚诺余项的三阶麦克劳林公式.
随机试题
下图为南半球中高纬度环流圈。读图回答下列问题。下列不属于土壤发育的主要影响因素的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性。
患者,男,70岁。2年来感活动后心前区疼痛,并逐渐加重,有时伴头晕、黑蒙,自含硝酸甘油效果不佳。既往无高血压、糖尿病、高血脂等病史。查体:血压100/60mmHg,脉搏58次/分,双肺(一),心界不大,心尖部S1正常,可闻S4,胸骨右缘第2肋间可闻3/6级
A.祛寒除湿B.祛风止痒C.益肝明目D.活血止痛E.温脾止泻补骨脂具有的功效是
一般拔牙后要向病人说明的注意事项有哪些?
下列关于砌体房屋抗震计算不正确论述是______。
开放式基金出现巨额赎回时,基金管理人不应采取的措施是()。
由于特殊原因,转债发行人可申请豁免披露()。
案主自决必须具备的前提是()。
下列选项中,不会出现在Cisco路由器路由表中的是()。
最新回复
(
0
)