首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
admin
2021-11-09
70
问题
设连续型随机变量X的概率密度为f(x)=
,求(1)k的值;(2)X的分布函数F(x).
选项
答案
(1)由∫
0
1
xdx+∫
1
2
k(2一x)dx=[*]=1,得k=1. (2)因为F(x)=∫
-∞
x
f(t)dt,所以 当x<0时,F(x)=0; 当0≤x<1时F(x)=∫
0
x
f(t)dt=[*]x
2
; 当1≤x<2时F(x)=∫
0
x
f(t)dt=∫
0
1
tdt+∫
1
x
(2-t)dt=2x一[*]x
2
-1; 当x≥2时,F(X)=1. 期F(x)=[*]
解析
考查利用概率密度计算分布函数的方法,是基本问题.注意到f(x)是分段函数,可根据x的不同取值范围直接利用公式F(x)=∫
-∞
x
f(t)dt计算.
转载请注明原文地址:https://kaotiyun.com/show/acy4777K
0
考研数学二
相关试题推荐
设曲线L:r=e2θ,则曲线L的弧微分为_______.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
设f(x)在[-a,a](a﹥0)上有四阶连续的导数,存在。证明:存在ε1,ε2∈[-a,a],使得.
设有微分方程y’-2y=Φ(x),其中,求在(-∞,+∞)内连续的函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
当x→1时,函数的极限()
随机试题
在自然光线下,瞳孔直径约为
未婚女性,20岁。主诉经期腹痛剧烈,于月经来潮时需服镇痛药并卧床休息。平时月经周期规律,基础体温呈双相。肛门检查:子宫前倾前屈、稍小、硬度正常,无压痛,两侧附件(一),分泌物白色透明。本病例最可能的诊断是
以下哪项是藿香具有的药理作用( )。
威灵仙的功效
论述事实认识错误及其对刑事责任的影响。
在环境噪声评价量中“LWECPN”符号表示()。
期货投资者保障基金由中国证监会集中管理,统筹使用。()[2013年3月真题]
三元线性方程组Ax=6的系数矩阵A的秩r(A)=2,且x1=(4,1,-2)T,x2=(2,2,-1)T,x3=(0,3,a)T均为Ax=b的解向量,则A=().
有以下程序#includemain(){intk=5;while(--k)printf("%d",k-=3);printf("\n");}执行后的输出结果是()。
Judyworksinasportsshop.Shelovesallkindsofsports.Shecanswimandskateverywell.Sheoftenplaysbasketballandvol
最新回复
(
0
)