首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
admin
2021-11-09
38
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
(1)求A的特征值.
(2)当实数k满足什么条件时A+kE正定?
选项
答案
(1)因为A是实对称矩阵,所以A的特征值都是实数. 假设A是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或-2.又因为r(A-0E)=r(A)=2,特征值0的重数为3-r(A-0E)=1,所以-2是A的二重特征值.A的特征值为0,-2,-2. (2)A+kE的特征值为k,k-2,k-2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/agy4777K
0
考研数学二
相关试题推荐
设f(lnχ)=求∫f(χ)dχ.
=_______.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化。
求极限。
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
当x→1时,函数的极限()
4阶行列式的值等于()
函数f(x)在区间(﹣1,1)内二阶可导,已知f(0)=0,f’(0)=1,且当x∈(﹣1,1)时f’’(x)﹥0成立,则()
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
随机试题
目前由政府调控价格的产品有()。
根据《支付结算办法》的规定,下列各项中,属于汇票背书时应记载的内容有()。
根据《证券法》规定,客户的交易结算资金,必须全额存入指定的商业银行,单独立户管理。()
政府补助包括与资产相关的政府补助和与收益相关的政府补助。()
函证银行存款时,在询证函的“本公司为出票人且由贵行承兑而尚未支付的银行承兑汇票”表格下特别注明“除上述列示的银行承兑汇票外,本公司并无由贵行承兑而尚未支付的其他银行承兑汇票”主要是针对银行存款交易的()认定。
具有与生产劳动相分离特征的教育阶段是()。
—HowdoyoulearnEnglish,Toby?—IoftenpracticeEnglish______chatting______myAmericanfriends.
在实际工作中坚持唯物主义就是()。
根据以下资料,回答下列问题。2012年第四季度我国劳动力市场供求情况是:
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisesthewholevocabulary.First,
最新回复
(
0
)