首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
admin
2019-08-27
93
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
B=(α
1
,α
2
,α
3
),求Bx=b的通解;
选项
答案
先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4一R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
一2α
3
. 可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2. 因此,Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可. 为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b的一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/52A4777K
0
考研数学二
相关试题推荐
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向z轴负向无限伸展的平面图形记为D.求:(I)D的面积A;(Ⅱ)D绕直线X=1旋转一周所成的旋转体的体积V.
由方程2y3-2y2﹢2xy﹢y-x2=0确定的函数y=y(x)()
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时(如图1一3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3。)
已知二二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
求曲线x3-xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离。
与曲线(y-2)2=x相切,且与曲线在点(1,3)的切线垂直的直线方程为______________。
设f(x)是六次多项式,已知曲线y=f(x)与x轴切于原点.且以(一1,1),(1,1)为拐点,又在(一1,1),(1,1)处有水平切线,则f(x)=___________.
随机试题
正常情况下唾液分泌量每分钟为
四物汤主治证候的病因病机是
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
黄某意图杀死张某,当其得知张某当晚在单位值班室值班时,即放火致使值班室烧毁,其结果却是将顶替张某值班的李某烧死。下列哪些判断不符合黄某对李某死亡结果所持的心理态度?()(2002/2/50)
我国中原地区某小山丘周围要布置一组住宅群,下图平面示意的A、B、C、D四个场地可供选择,在满足日照通风要求的前提下,()场地对提高建筑密度、节约用地和适用性方面最为有利。
下列关于汇款业务的说法中,正确的是()。
将等质量的铜分别放入下列溶液中,加热,充分反应后,在标准状况下有气体生成且质量最小的是()。
________足指没有预定目的、不需要经过努力的识记。
给定资料1.我们几乎每天都可以从来自世界各地的新闻报道中听到类似的消息:海水酸化、陆地沙漠化、两极冰川融化—人类仿佛正在靠近一场空前绝后的灾难。全球变暖,生物种类减少,地球生态恶化,目前越来越多的人愿意相信,所有这些悲哀惨淡的生态景象都或多或少与
奥地利法学家埃利希在《法社会学原理》中指出:“在当代以及任何其他的时代。法的发展的重心既不在立法,也不在法学或司法判决,而在于社会本身。”关于这句话涵义的阐释,下列说法错误的是:
最新回复
(
0
)