首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
admin
2019-08-27
82
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
B=(α
1
,α
2
,α
3
),求Bx=b的通解;
选项
答案
先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4一R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
一2α
3
. 可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2. 因此,Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可. 为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b的一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/52A4777K
0
考研数学二
相关试题推荐
设二二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。写出二次型的矩阵表达式;
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
设曲线L过点(1,-1),L上任意一点P(x,y)处的切线交x轴于点T,O为坐标原点,若|PT|=|OT|,求曲线L的方程。
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.求曲线Γ的表达式.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,,ψ(x)=f[x,f(x,x)].求.
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
求函数的导数:y=ef(x).f(ex),其中f(x)具有一阶导数.
求在χ=1时有极大值6,在χ=3时有极小值2的三次多项式.
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
随机试题
根据管理需要和具体情况,企业可以设计哪些类型的辅助会计制度()
标志中国延续两千余年封建帝制覆灭的事件是
引起ITP病人出血的机制中,下列哪项不可能
某规模化猪场5~8周龄的保育仔猪出现发病,病猪发热、食欲减退;呼吸困难、咳嗽;关节肿胀、跛行、颤抖;共济失调、可视黏膜发绀,严重者死亡。临死前侧卧或四肢呈划水样。剖检可见多发性纤维素性或浆液性脑膜炎、胸膜炎、心肌炎、腹膜炎、关节炎、间质性肺炎、心包炎,形成
表面活性剂在药剂方面常用作
投资与消费虽然同属于现代社会中重要的经济活动,但具有自身的运动规律和作用机制,投资的一般特性包括:()。
订立合同应该( )。
信用证不准分批,又没有数量增减条款,则实际装运数量允许有5%的增减幅度。()
新中国成立以后,我国政府制定了“两弹一星”的战略决策,这一战略目标的实现是在()。
A、Aperformance.B、Apopgroup.C、Thenameofatheater.D、Thenameofadancer.B
最新回复
(
0
)