首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
admin
2019-08-27
104
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
B=(α
1
,α
2
,α
3
),求Bx=b的通解;
选项
答案
先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4一R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
一2α
3
. 可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2. 因此,Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可. 为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b的一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/52A4777K
0
考研数学二
相关试题推荐
在(-∞,﹢∞)内连续的充要条件是a=______.b=______.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
设f(x)=,x≥0,判断f(x)是否单调,是否有界?
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
与曲线(y-2)2=x相切,且与曲线在点(1,3)的切线垂直的直线方程为______________。
设f(x)是(—∞,+∞)上的连续奇函数,且满足|f(x)|≤M,其中常数M>0,则函数F(x)=∫0xte—t2f(t)dt是(—∞,+∞)上的
求极限
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明第一小题的逆命题成立。
设A,B均是n阶非零矩阵,已知A2=A,B2=B,且AB=BA=O,则下列3个说法:①0未必是A和B的特征值;②1必是A和B的特征值;③若α是A的属于特征值1的特征向量,则α必是B的属于特征值0的特征向量.正确说法的
随机试题
∫cos5xsinxxdx
不予追究刑事责任的情形包括()。
某企业购入物资一批,货款付清,物资入库。该项业务中,取得或填制的原始凭证有:增值税专用发票1张,银行结算凭证1张,收料单5张,收料凭证汇总表1张,则在记账凭证中注明的附件张数应为( )。
总经理因故临时不能履行职权的,由理事会指定副总经理代其履行职权。( )
金融机构通过收益留成来增加资本的优越性在于()。
限制民事行为能力人订立纯获利益的合同()。
货币政策是政府调控宏观经济的基本手段之一,当通货膨胀较为严重时,应该采取的货币政策是:
A、 B、 C、 D、 C
Chinaplanstospendbillionsofdollarsinthenextfewyearstodevelopmediaandentertainmentcompaniesthatithopescanco
计算机只懂机器语言,而现在人们一般用高级语言编写程序,将高级语言变为机器语言程序需经过______。
最新回复
(
0
)