首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=(1,4,0,2)T,α=(2,7,1,3)T,α=(0,1,一1,α)T,β=(3,10,b,4)T,问(1)a,b取何值时,β不能由α1,α2,α3线性表出?(2)a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知α=(1,4,0,2)T,α=(2,7,1,3)T,α=(0,1,一1,α)T,β=(3,10,b,4)T,问(1)a,b取何值时,β不能由α1,α2,α3线性表出?(2)a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
admin
2017-12-23
22
问题
已知α=(1,4,0,2)
T
,α=(2,7,1,3)
T
,α=(0,1,一1,α)
T
,β=(3,10,b,4)
T
,问(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表出?(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表出?并写出此表示式.
选项
答案
考虑线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β,对增广矩阵进行初等行变换: [*] 从而(1)当b≠2时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β无解,这时β不能由α
1
,α
2
,α
3
线性表出. (2)当b=2,a≠1时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有唯一解x=(x
1
,x
2
,x
3
)
T
=(一1,2,0)
T
,β可由α
1
,α
2
,α
3
唯一地线性表出,且表示式为β=一α
1
+2α
2
. 当b=2,a=2时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有无穷多解x=(x
1
,x
2
,x
3
)
T
=k(一2,1,1)
T
+(一1,2,0)
T
,其中k为任意常数. 此时β可由α
1
,α
2
,α
3
线性表出,且表示式不唯一,表示式为β=一(2k+1)α
1
+(k+2)α
2
+kα
3
.
解析
本题考查向量的线性表示.要求考生掌握向量β可由向量组α
1
,α
2
……α
m
线性表示的充分必要条件是线性方程组x
1
α
1
+x
2
α
2
+…+x
m
α
m
=β有解,不能表示是线性方程组x
1
α
1
+x
2
α
2
+…+x
m
α
m
=β无解.
转载请注明原文地址:https://kaotiyun.com/show/amk4777K
0
考研数学二
相关试题推荐
U的分布函数为G(u)=P{U≤u}=P{X+Y≤u}=P{X+Y≤u,X=1}+P{X+Y≤u,X=2}=P{X+Y≤u|X=1}P{X=1}+P{X+Y≤u|X=2}P{X=2}=P{Y≤u-1|X=1}P
下列给出的各对函数是不是相同的函数?
求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n),(x)(n≥3).
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
被积函数为对数函数与幂函数的乘积,故采用分部积分法,将对数函数看作u.[*]
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设y=sin4x+cos4x,求y(n).
函数f(x)在[0,+∞]上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0(1)求导数f’(x);(2)证明:当x≥0时,成立不等式:e一x≤f(x)≤1.
随机试题
教学的特殊形式是()
男性,59岁,发现高血压7年,1年来血压控制不稳定,且有胸闷,心悸,心率56次/分,超声心动图检测EF0.56,胸片示左心室不扩大,考虑左心室舒张功能障碍。为改善左心室顺应性,下述哪种药物最合适
A.疏肝解郁B.破血行气C.解蛇虫毒D.消肿生肌E.接骨疗伤自然铜除能散瘀止痛外,又能()
工程变更的补偿范围,通常以()一定的百分比表示。
工程监理人员发现工程设计不符合建筑工程质量标准或者合同约定的质量要求的,应当( )。
理想标准成本考虑了生产过程中不可避免的损失、故障和偏差,属于企业经过努力可以达到的成本标准。()
在Kano模型中,()是质量的竞争性元素。
为了帮助学生掌握较难动作而采取的技术结构与所学身体练习相似的简单技术动作的练习是()练习。
一个爸爸很关注儿子的学习情况和班级里学习环境情况。于是一次他问儿子:“你们班上自习课的时候有多少人?”儿子说:“老师在的时候有45人。”于是爸爸又问:“老师不在的时候有多少人”。儿子回答:“一个人也没有。”问题:(1)评价一下这个班级的
根据以下资料,回答下列问题。2010年全年,北京地区进出口总额3014.1亿美元,比上年增长40.3%。其中出口554.7亿美元,增长14.7%;进口2459.4亿美元,增长47.8%。“十一五”期间,北京地区进出口总额累计达到11389.3亿美元,是“
最新回复
(
0
)