首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=(1,4,0,2)T,α=(2,7,1,3)T,α=(0,1,一1,α)T,β=(3,10,b,4)T,问(1)a,b取何值时,β不能由α1,α2,α3线性表出?(2)a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知α=(1,4,0,2)T,α=(2,7,1,3)T,α=(0,1,一1,α)T,β=(3,10,b,4)T,问(1)a,b取何值时,β不能由α1,α2,α3线性表出?(2)a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
admin
2017-12-23
41
问题
已知α=(1,4,0,2)
T
,α=(2,7,1,3)
T
,α=(0,1,一1,α)
T
,β=(3,10,b,4)
T
,问(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表出?(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表出?并写出此表示式.
选项
答案
考虑线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β,对增广矩阵进行初等行变换: [*] 从而(1)当b≠2时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β无解,这时β不能由α
1
,α
2
,α
3
线性表出. (2)当b=2,a≠1时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有唯一解x=(x
1
,x
2
,x
3
)
T
=(一1,2,0)
T
,β可由α
1
,α
2
,α
3
唯一地线性表出,且表示式为β=一α
1
+2α
2
. 当b=2,a=2时,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有无穷多解x=(x
1
,x
2
,x
3
)
T
=k(一2,1,1)
T
+(一1,2,0)
T
,其中k为任意常数. 此时β可由α
1
,α
2
,α
3
线性表出,且表示式不唯一,表示式为β=一(2k+1)α
1
+(k+2)α
2
+kα
3
.
解析
本题考查向量的线性表示.要求考生掌握向量β可由向量组α
1
,α
2
……α
m
线性表示的充分必要条件是线性方程组x
1
α
1
+x
2
α
2
+…+x
m
α
m
=β有解,不能表示是线性方程组x
1
α
1
+x
2
α
2
+…+x
m
α
m
=β无解.
转载请注明原文地址:https://kaotiyun.com/show/amk4777K
0
考研数学二
相关试题推荐
[*]
[*]
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设函数x=f(y)、反函数y=f-1(x)及fˊ(f-1(x)),f〞(f-1(x))都存在,且fˊ(f-1(x))≠0,求证:
求下列各微分方程的通解或在给定初始条件下的特解
求曲线上点(1,1)处的切线方程与法线方程.
设,问a,b为何值时,函数F(x)=f(x)+g(x)在﹙﹣∞,﹢∞﹚上连续。
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
求在抛物线y=x2上横坐标为3的点的切线方程.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
随机试题
在D盘下新建一个Excel工作簿,完成以下操作:(1)在Sheet1工作表的A1:H6区域中建立和编辑如表所示的数据表。(2)设置“班级学习成绩表”为居中、加粗、字号20,“高一”、“高二”和“高三”为居中、加粗、字号16,各班级标题居中、加粗,其余
静脉回流的影响因素,包括
类风湿关节炎最早侵犯的关节是
某城市小学投资700万元建设教学楼,组织工程施工公开招标,招标文件规定投标人应具备的资格条件中,正确合理的是()。
根据《测绘法》,省、自治区、直辖市和自治州、县、自治县、市行政区域界线的标准画法图,由()拟订,报国务院批准后公布。
在下列给出的投资方案评价方法中,可用于计算期不同的互斥型方案评价的动态方法是()。
Whatdoesthefutureholdfortheproblemofhousing?Agood(1)_____depends,ofcourse,onthemeaningof"future".Ifoneis
现代计算机中采用二进制码,下列选项中不是它的优点是
Thecurrentadministration,beingworriedoversomeforeigntradebarriersbeingremovedandourexportsfailingtoincreaseas
NicholasChauvin,aFrenchsoldier,airedhisvenerationofNapoleonBonaparteso______andunceasinglythathebecamethelaug
最新回复
(
0
)